An efficient recurrent neural network with ensemble classifier-based weighted model for disease prediction

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2022-01-01 DOI:10.1515/jisys-2022-0068
Tamilselvi Kesavan, Ramesh Kumar Krishnamoorthy
{"title":"An efficient recurrent neural network with ensemble classifier-based weighted model for disease prediction","authors":"Tamilselvi Kesavan, Ramesh Kumar Krishnamoorthy","doi":"10.1515/jisys-2022-0068","DOIUrl":null,"url":null,"abstract":"Abstract Day-to-day lives are affected globally by the epidemic coronavirus 2019. With an increasing number of positive cases, India has now become a highly affected country. Chronic diseases affect individuals with no time identification and impose a huge disease burden on society. In this article, an Efficient Recurrent Neural Network with Ensemble Classifier (ERNN-EC) is built using VGG-16 and Alexnet with weighted model to predict disease and its level. The dataset is partitioned randomly into small subsets by utilizing mean-based splitting method. Various models of classifier create a homogeneous ensemble by utilizing an accuracy-based weighted aging classifier ensemble, which is a weighted model’s modification. Two state of art methods such as Graph Sequence Recurrent Neural Network and Hybrid Rough-Block-Based Neural Network are used for comparison with respect to some parameters such as accuracy, precision, recall, f1-score, and relative absolute error (RAE). As a result, it is found that the proposed ERNN-EC method accomplishes accuracy of 95.2%, precision of 91%, recall of 85%, F1-score of 83.4%, and RAE of 41.6%.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"12 1","pages":"979 - 991"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Day-to-day lives are affected globally by the epidemic coronavirus 2019. With an increasing number of positive cases, India has now become a highly affected country. Chronic diseases affect individuals with no time identification and impose a huge disease burden on society. In this article, an Efficient Recurrent Neural Network with Ensemble Classifier (ERNN-EC) is built using VGG-16 and Alexnet with weighted model to predict disease and its level. The dataset is partitioned randomly into small subsets by utilizing mean-based splitting method. Various models of classifier create a homogeneous ensemble by utilizing an accuracy-based weighted aging classifier ensemble, which is a weighted model’s modification. Two state of art methods such as Graph Sequence Recurrent Neural Network and Hybrid Rough-Block-Based Neural Network are used for comparison with respect to some parameters such as accuracy, precision, recall, f1-score, and relative absolute error (RAE). As a result, it is found that the proposed ERNN-EC method accomplishes accuracy of 95.2%, precision of 91%, recall of 85%, F1-score of 83.4%, and RAE of 41.6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成分类器加权模型的有效递归神经网络疾病预测
2019年冠状病毒疫情影响了全球的日常生活。随着阳性病例数量的增加,印度现在已成为一个受影响严重的国家。慢性病对个体的影响没有时间识别,给社会造成了巨大的疾病负担。本文利用VGG-16和Alexnet的加权模型,构建了一种基于集成分类器的高效递归神经网络(ERNN-EC),用于疾病及其水平的预测。采用基于均值的分割方法将数据集随机分割成小子集。各种分类器模型利用基于精度的加权老化分类器集成来创建同质集成,这是对加权模型的改进。采用两种最先进的方法,如图序列递归神经网络和基于粗糙块的混合神经网络,对准确性、精密度、召回率、f1分数和相对绝对误差(RAE)等参数进行比较。结果发现,本文提出的ERNN-EC方法准确率为95.2%,精密度为91%,召回率为85%,f1分数为83.4%,RAE为41.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
A study on predicting crime rates through machine learning and data mining using text A multiorder feature tracking and explanation strategy for explainable deep learning Intelligent control system for industrial robots based on multi-source data fusion Reinforcement learning with Gaussian process regression using variational free energy A novel distance vector hop localization method for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1