Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER Condensed Matter Physics Pub Date : 2023-05-25 DOI:10.5488/CMP.26.23603
H. Espinosa-Jim'enez, A. B. Salazar-Arriaga, H. Domínguez
{"title":"Development of a new force field for the family of primary aliphatic amines using the three steps systematic parameterization procedure","authors":"H. Espinosa-Jim'enez, A. B. Salazar-Arriaga, H. Domínguez","doi":"10.5488/CMP.26.23603","DOIUrl":null,"url":null,"abstract":"The applicability of the three steps systematic parametrization procedure (3SSPP) to develop a force field for primary amines was evaluated in the present work. Previous simulations of primary amines show that current force fields (FF) can underestimate some experimental values under room conditions. Therefore, we propose a new set of parameters, for an united atom (UA) model, that can be used for short and long amines which predict correctly thermodynamic and dynamical properties. Following the 3SSPP methodology, the partial charges are chosen to match the experimental dielectric constant whereas the Lennard-Jones (LJ) parameters, ε and σ, are fitted to reproduce the surface tension at the vapor-liquid interface and the liquid density, respectively. Simulations were initially conducted for the propylamine molecule by introducing three different types of carbon atoms, Cα and Cβ, with electric charges, and Cn, without charge. Then, modifying the charges of the carbons and using the transferable LJ parameters, the new set of constants for long amines were found. The results show good agreement for the experimental dielectric constant and mass density with a percentage error less than 1% surface tension the error is up to 4% ethylamine, the new charges were obtained from a fitting function calculated from the long amines results. For these molecules, the values of the dielectric constant and the surface tension present errors of the order of 10% with the experimental data. Miscibility of the amines was also tested with the new parameters and the results show reasonable agreement with experiments.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"60 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.23603","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The applicability of the three steps systematic parametrization procedure (3SSPP) to develop a force field for primary amines was evaluated in the present work. Previous simulations of primary amines show that current force fields (FF) can underestimate some experimental values under room conditions. Therefore, we propose a new set of parameters, for an united atom (UA) model, that can be used for short and long amines which predict correctly thermodynamic and dynamical properties. Following the 3SSPP methodology, the partial charges are chosen to match the experimental dielectric constant whereas the Lennard-Jones (LJ) parameters, ε and σ, are fitted to reproduce the surface tension at the vapor-liquid interface and the liquid density, respectively. Simulations were initially conducted for the propylamine molecule by introducing three different types of carbon atoms, Cα and Cβ, with electric charges, and Cn, without charge. Then, modifying the charges of the carbons and using the transferable LJ parameters, the new set of constants for long amines were found. The results show good agreement for the experimental dielectric constant and mass density with a percentage error less than 1% surface tension the error is up to 4% ethylamine, the new charges were obtained from a fitting function calculated from the long amines results. For these molecules, the values of the dielectric constant and the surface tension present errors of the order of 10% with the experimental data. Miscibility of the amines was also tested with the new parameters and the results show reasonable agreement with experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用三步系统参数化方法建立了伯脂肪胺族的新力场
本文评价了三步系统参数化法(3SSPP)在建立伯胺力场中的适用性。以往对伯胺的模拟表明,在室温条件下,电流力场(FF)会低估某些实验值。因此,我们提出了一组新的参数,用于统一原子(UA)模型,可以正确预测短胺和长胺的热力学和动力学性质。根据3SSPP方法,选择部分电荷来匹配实验介电常数,并拟合Lennard-Jones (LJ)参数ε和σ来分别再现气液界面处的表面张力和液体密度。通过引入带电荷的Cα和Cβ以及不带电荷的Cn三种不同类型的碳原子,对丙胺分子进行了模拟。然后,通过改变碳的电荷并利用可转移的LJ参数,得到了长胺的一组新的常数。结果表明,实验介质常数和质量密度符合较好,表面张力误差小于1%,乙胺的表面张力误差高达4%,新电荷是由长胺结果计算的拟合函数得到的。对于这些分子,介电常数和表面张力值与实验数据存在10%左右的误差。用新参数对胺类化合物的混相进行了测试,结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
期刊最新文献
How should a small country respond to climate change? Aspects of the microscopic structure of curcumin solutions with water-dimethylsulfoxide solvent. Molecular dynamics computer simulation study On the existence of a second branch of transverse collective excitations in liquid metals Proportional correlation between heat capacity and thermal expansion of atomic, molecular crystals and carbon nanostructures An ab initio study of the static, dynamic and electronic properties of some liquid 5d transition metals near melting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1