A Novel Evolution Optimization Algorithm Using a Multidimensional Geometric Method: Pivot Optimiser

S. Thongkrairat, V. Chutchavong
{"title":"A Novel Evolution Optimization Algorithm Using a Multidimensional Geometric Method: Pivot Optimiser","authors":"S. Thongkrairat, V. Chutchavong","doi":"10.5013/IJSSST.A.21.04.13","DOIUrl":null,"url":null,"abstract":"Many optimisation techniques have recently been developed. Several mimic natural activity or another theory, such as the Grey Wolf Optimiser, which emulates wolf hunting mechanisms to find a global minimum, and Particle Swarm Optimisation, which uses birds’ flocking behaviour to avoid each local minimum. Each developed algorithm uses guidelines to improve its mimicry and reach its goal. This work proposes the pivot optimiser, a new evolution optimisation algorithm inspired by the multidimensional geometric method to create a unique evolution in each generation. The goal of this imitation is to make an algorithm suitable for a multi-situation problem with a stable result. The results show that the pivot optimiser outperformed on competitive problems compared with other competitive optimisers. Keywordsoptimisation, algorithm, swarm intelligence, geometric, GWO, PSO","PeriodicalId":14286,"journal":{"name":"International journal of simulation: systems, science & technology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of simulation: systems, science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5013/IJSSST.A.21.04.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many optimisation techniques have recently been developed. Several mimic natural activity or another theory, such as the Grey Wolf Optimiser, which emulates wolf hunting mechanisms to find a global minimum, and Particle Swarm Optimisation, which uses birds’ flocking behaviour to avoid each local minimum. Each developed algorithm uses guidelines to improve its mimicry and reach its goal. This work proposes the pivot optimiser, a new evolution optimisation algorithm inspired by the multidimensional geometric method to create a unique evolution in each generation. The goal of this imitation is to make an algorithm suitable for a multi-situation problem with a stable result. The results show that the pivot optimiser outperformed on competitive problems compared with other competitive optimisers. Keywordsoptimisation, algorithm, swarm intelligence, geometric, GWO, PSO
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于多维几何方法的进化优化算法:枢轴优化器
最近开发了许多优化技术。一些模拟自然活动或其他理论,例如灰狼优化器,它模拟狼狩猎机制以找到全局最小值,以及粒子群优化,它利用鸟类的群集行为来避免每个局部最小值。每个开发的算法都使用指导方针来改进其模仿并达到其目标。这项工作提出了枢轴优化器,这是一种新的进化优化算法,灵感来自多维几何方法,在每一代中创建一个独特的进化。这种模拟的目标是使算法适合于多情况问题并具有稳定的结果。结果表明,与其他竞争优化器相比,支点优化器在竞争问题上的表现更好。关键词优化,算法,群体智能,几何,GWO,粒子群算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Business Process Automation: Automating the Analysis of Anomaly Data The Emergence of Quaternary-Based Computational-Strata from a Symmetrical Multi-Layered Model of Light Understanding the Importance of Efficient Visitor Flow Within Tokyo Skytree A Cross-Layer Architecture with Service Adaptability for Wireless Multimedia Networks Split Step Fourier Method Application, Reducing Pulse Broadening Effect for a Single Mode Optical Fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1