{"title":"Friction Control of Chitosan-Ag Hydrogel by Silver Ion","authors":"Jing Hua, M. Björling, R. Larsson, Y. Shi","doi":"10.30919/esmm5f555","DOIUrl":null,"url":null,"abstract":"The tunable friction behavior of Chitosan (CS)-Ag hydrogel enabled by altering silver ions is evaluated. Friction control could be achieved under boundary lubrication. When adding Ag + into a CS solution, the formed gel provided lower friction. The difference in friction coefficient between the two phases can be reversibly switched by adding Cl - or excessive Ag + ions. It also can be found that the gel phased lubricant has a better anti-wear ability under boundary lubrication conditions. Both solution and gel typed lubricants could achieve superlubricity under elastohydrodynamic lubrication. The switchable and tunable frictional hydrogels can extend the application in the design of smart control equipment. hydrogels to very The gel-network to the facile of metal ions with amino and hydroxy groups in chitosan (CS) chains. These hydrogels were also shown to be responsive to a variety of external stimuli, including pH-value, chemical redox reactions, cations, anions, and neutral species.","PeriodicalId":11851,"journal":{"name":"ES Materials & Manufacturing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ES Materials & Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30919/esmm5f555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The tunable friction behavior of Chitosan (CS)-Ag hydrogel enabled by altering silver ions is evaluated. Friction control could be achieved under boundary lubrication. When adding Ag + into a CS solution, the formed gel provided lower friction. The difference in friction coefficient between the two phases can be reversibly switched by adding Cl - or excessive Ag + ions. It also can be found that the gel phased lubricant has a better anti-wear ability under boundary lubrication conditions. Both solution and gel typed lubricants could achieve superlubricity under elastohydrodynamic lubrication. The switchable and tunable frictional hydrogels can extend the application in the design of smart control equipment. hydrogels to very The gel-network to the facile of metal ions with amino and hydroxy groups in chitosan (CS) chains. These hydrogels were also shown to be responsive to a variety of external stimuli, including pH-value, chemical redox reactions, cations, anions, and neutral species.