Progress toward Circularity of Polyester and Cotton Textiles

Siyan Wang, S. Salmon
{"title":"Progress toward Circularity of Polyester and Cotton Textiles","authors":"Siyan Wang, S. Salmon","doi":"10.3390/suschem3030024","DOIUrl":null,"url":null,"abstract":"Millions of tons of textile waste are landfilled or incinerated in the world every year due to insufficient recycle value streams and the complex composition of textile end products. The goal of this review is to highlight pathways for simplifying and separating textile wastes into valuable raw material streams that will promote their recovery and conversion to useful products. The discussion focuses on advances in sorting, separation, decolorization and conversion of polyester and cotton, the two most common textile fibers. Sorting processes are gaining automation using spectroscopic methods that detect chemical composition differences between materials to divide them into categories. Separation, through dissolving or degrading, makes it possible to deconstruct blended textiles and purify polymers, monomers and co-products. Waste cotton can produce high quality regenerated cellulose fibers, cellulose nanocrystals (CNCs) or biofuels. Waste polyester can produce colored yarns or can be chemically converted to its starting monomers for the recreation of virgin polymer as a complete closed loop. The current strategies for decolorization are presented. Life cycle assessment (LCA) studies found that recycling polyester/cotton blended fabrics for subsequent uses is more sustainable than incineration, and research on producing biomass-based poly-ester also offers feasible avenues for improving textile sustainability and promoting circular processing.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem3030024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Millions of tons of textile waste are landfilled or incinerated in the world every year due to insufficient recycle value streams and the complex composition of textile end products. The goal of this review is to highlight pathways for simplifying and separating textile wastes into valuable raw material streams that will promote their recovery and conversion to useful products. The discussion focuses on advances in sorting, separation, decolorization and conversion of polyester and cotton, the two most common textile fibers. Sorting processes are gaining automation using spectroscopic methods that detect chemical composition differences between materials to divide them into categories. Separation, through dissolving or degrading, makes it possible to deconstruct blended textiles and purify polymers, monomers and co-products. Waste cotton can produce high quality regenerated cellulose fibers, cellulose nanocrystals (CNCs) or biofuels. Waste polyester can produce colored yarns or can be chemically converted to its starting monomers for the recreation of virgin polymer as a complete closed loop. The current strategies for decolorization are presented. Life cycle assessment (LCA) studies found that recycling polyester/cotton blended fabrics for subsequent uses is more sustainable than incineration, and research on producing biomass-based poly-ester also offers feasible avenues for improving textile sustainability and promoting circular processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涤纶和棉织物的循环性研究进展
由于循环利用价值流不足和纺织最终产品成分复杂,全球每年有数百万吨纺织废料被填埋或焚烧。本综述的目的是强调简化和分离纺织废物为有价值的原料流的途径,这将促进它们的回收和转化为有用的产品。讨论的重点是在分类,分离,脱色和转化聚酯和棉花,两种最常见的纺织纤维的进展。分选过程正在获得自动化,使用光谱方法检测材料之间的化学成分差异,将它们分类。分离,通过溶解或降解,使解构混纺纺织品和纯化聚合物,单体和副产品成为可能。废棉花可以生产高质量的再生纤维素纤维、纤维素纳米晶体(CNCs)或生物燃料。废聚酯可以生产彩色纱线,也可以化学转化为其起始单体,以作为一个完整的闭环再生原始聚合物。介绍了目前的脱色策略。生命周期评估(LCA)研究发现,回收涤纶/棉混纺织物供后续使用比焚烧更具可持续性,研究生产生物质聚酯也为提高纺织品的可持续性和促进循环加工提供了可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aqueous Solution of Ionic Liquid Is an Efficient Substituting Solvent System for the Extraction of Alginate from Sargassum tenerrimum The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy Recent Progress in Turning Waste into Catalysts for Green Syntheses A Perspective on Solar-Driven Electrochemical Routes for Sustainable Methanol Production Waste Lignocellulosic Biomass as a Source for Bioethanol Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1