A Software Fault Prediction on Inter- and Intra-Release Prediction Scenarios

A. Mishra, Meenu Singla
{"title":"A Software Fault Prediction on Inter- and Intra-Release Prediction Scenarios","authors":"A. Mishra, Meenu Singla","doi":"10.4018/ijossp.287611","DOIUrl":null,"url":null,"abstract":"Software quality engineering applied numerous techniques for assuring the quality of software, namely testing, verification, validation, fault tolerance, and fault prediction of the software. The machine learning techniques facilitate the identification of software modules as faulty or non-faulty. In most of the research, these approaches predict the fault-prone module in the same release of the software. Although, the model is found to be more efficient and validated when training and tested data are taken from previous and subsequent releases of the software respectively. The contribution of this paper is to predict the faults in two scenarios i.e. inter and intra release prediction. The comparison of both intra and inter-release fault prediction by computing various performance matrices using machine learning methods shows that intra-release prediction is having better accuracy compared to inter-releases prediction across all the releases. Also, but both the scenarios achieve good results in comparison to existing research work.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"7 1","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.287611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Software quality engineering applied numerous techniques for assuring the quality of software, namely testing, verification, validation, fault tolerance, and fault prediction of the software. The machine learning techniques facilitate the identification of software modules as faulty or non-faulty. In most of the research, these approaches predict the fault-prone module in the same release of the software. Although, the model is found to be more efficient and validated when training and tested data are taken from previous and subsequent releases of the software respectively. The contribution of this paper is to predict the faults in two scenarios i.e. inter and intra release prediction. The comparison of both intra and inter-release fault prediction by computing various performance matrices using machine learning methods shows that intra-release prediction is having better accuracy compared to inter-releases prediction across all the releases. Also, but both the scenarios achieve good results in comparison to existing research work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于版本间和版本内预测场景的软件故障预测
软件质量工程应用了许多技术来保证软件的质量,即软件的测试、验证、确认、容错和故障预测。机器学习技术有助于识别故障或非故障的软件模块。在大多数研究中,这些方法预测同一个软件版本中的易故障模块。尽管如此,当训练数据和测试数据分别来自软件的先前和后续版本时,发现该模型更加有效和有效。本文的贡献是在断层释放预测和断层释放内预测两种情况下对断层进行预测。利用机器学习方法计算各种性能矩阵,对版本内和版本间故障预测进行比较,结果表明,在所有版本中,版本内预测比版本间预测具有更好的准确性。而且,与现有的研究工作相比,这两种情况都取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
期刊最新文献
Organizational Influencers in Open-Source Software Projects Enhancing Clustering Performance Using Topic Modeling-Based Dimensionality Reduction Cross Project Software Refactoring Prediction Using Optimized Deep Learning Neural Network with the Aid of Attribute Selection Bug Triage Automation Approaches Modelling and Simulation of Patient Flow in the Emergency Department During the COVID-19 Pandemic Using Hierarchical Coloured Petri Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1