{"title":"Design & Analysis of PWM & MPPT Power Converters for Energy Harvesting IoT Nodes","authors":"Himanshu Sharma, A. Haque, Z. Jaffery","doi":"10.1109/ICPECA47973.2019.8975396","DOIUrl":null,"url":null,"abstract":"This paper focus on the design of efficient circuit and systems for low power (< 1 W) energy harvesting wireless sensor network (WSN) nodes. We investigated various topologies of solar battery charging systems. We designed a 3.6 volts battery charging circuit in MATLAB/Simulink for IoT nodes. We observed that using pulse width modulation (PWM) control techniques the battery charges up to 30% only for 500 seconds of simulation time. On another hand, using Perturb & Observation (P&O) maximum power point tracking (MPPT) techniques the battery charges up to 95 % within 200 seconds of simulation time only. Thus, as shown by our simulation results the P&O MPPT is more efficient as compared to PWM technique for battery charging of IoT nodes.s","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"6 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA47973.2019.8975396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper focus on the design of efficient circuit and systems for low power (< 1 W) energy harvesting wireless sensor network (WSN) nodes. We investigated various topologies of solar battery charging systems. We designed a 3.6 volts battery charging circuit in MATLAB/Simulink for IoT nodes. We observed that using pulse width modulation (PWM) control techniques the battery charges up to 30% only for 500 seconds of simulation time. On another hand, using Perturb & Observation (P&O) maximum power point tracking (MPPT) techniques the battery charges up to 95 % within 200 seconds of simulation time only. Thus, as shown by our simulation results the P&O MPPT is more efficient as compared to PWM technique for battery charging of IoT nodes.s