K. Dawson, F. Duarte-Martinez, S. Gray, J. Nicholls, G. Gibson, J. Leggett, G. Tatlock
{"title":"Environmentally assisted cracking of a single crystal nickel-based superalloy","authors":"K. Dawson, F. Duarte-Martinez, S. Gray, J. Nicholls, G. Gibson, J. Leggett, G. Tatlock","doi":"10.1080/09603409.2023.2182587","DOIUrl":null,"url":null,"abstract":"ABSTRACT Single crystal material, of CMSX-4® alloy composition, was cast and secondary orientation was controlled at the machining stage, to produce c-ring cross-section tubes with known crystallographic orientations. The c-ring tubes were coated with NaCl before being subject to loading up to 700MPa and heated for durations of up to 2 hrs at 550°C in flowing environments containing air and SO2. No cracking was observed in short term tests that were run in the absence of either NaCl, or SO2, indicating a symbiotic interaction is required to initiate cracking. Experiments confirm the presence of oxygen, chlorine and sulphur at the crack tips, formed along {001} crystallographic planes, however, they were distributed discretely, with several oxide and sulphide phases observed. In this work, we image, analyse and identify the phases formed during the cracking and corrosion of CMSX-4® superalloy and hypothesise on the complex chemical interactions that take place during crack initiation.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":"1 1","pages":"296 - 307"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2182587","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Single crystal material, of CMSX-4® alloy composition, was cast and secondary orientation was controlled at the machining stage, to produce c-ring cross-section tubes with known crystallographic orientations. The c-ring tubes were coated with NaCl before being subject to loading up to 700MPa and heated for durations of up to 2 hrs at 550°C in flowing environments containing air and SO2. No cracking was observed in short term tests that were run in the absence of either NaCl, or SO2, indicating a symbiotic interaction is required to initiate cracking. Experiments confirm the presence of oxygen, chlorine and sulphur at the crack tips, formed along {001} crystallographic planes, however, they were distributed discretely, with several oxide and sulphide phases observed. In this work, we image, analyse and identify the phases formed during the cracking and corrosion of CMSX-4® superalloy and hypothesise on the complex chemical interactions that take place during crack initiation.
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.