Retreval of Solar-Induced Chlorohyll Fluoresence with Principal Component Ananlysis Method

Menghao Ji, B. Tang
{"title":"Retreval of Solar-Induced Chlorohyll Fluoresence with Principal Component Ananlysis Method","authors":"Menghao Ji, B. Tang","doi":"10.1109/IGARSS.2019.8898484","DOIUrl":null,"url":null,"abstract":"The Fraunhofer line discrimination (FLD) principle is widely used for retrieving solar-induced chlorophyll fluorescence (SIF), which assumes that the spectral reflectance is smooth and can be modeled using simply mathematical function. However, the changes in the sun and observation geometry and atmospheric properties result in the ‘hump’ or ‘dip’ of the reflectance spectrum in the oxygen A-band. This leads to overestimations or underestimations in the SIF retrieval. The principal component analysis (PCA) algorithm is one of the main approaches used for satellite-based SIF retrieval, which can acquire reflectance characteristic information due to directional effect with large datasets. This paper attempts to test whether the errors caused by FLD method can be eliminated using the PCA algorithm. The results show that the PCA algorithm performs well in all conditions, with root mean square error less than 0.005, indicating that the bias caused by the changes in sun and observation geometry could be eliminated with PCA algorithm.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"27 1","pages":"1955-1958"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Fraunhofer line discrimination (FLD) principle is widely used for retrieving solar-induced chlorophyll fluorescence (SIF), which assumes that the spectral reflectance is smooth and can be modeled using simply mathematical function. However, the changes in the sun and observation geometry and atmospheric properties result in the ‘hump’ or ‘dip’ of the reflectance spectrum in the oxygen A-band. This leads to overestimations or underestimations in the SIF retrieval. The principal component analysis (PCA) algorithm is one of the main approaches used for satellite-based SIF retrieval, which can acquire reflectance characteristic information due to directional effect with large datasets. This paper attempts to test whether the errors caused by FLD method can be eliminated using the PCA algorithm. The results show that the PCA algorithm performs well in all conditions, with root mean square error less than 0.005, indicating that the bias caused by the changes in sun and observation geometry could be eliminated with PCA algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用主成分分析法回收太阳诱导的叶绿素荧光
弗劳恩霍夫线分辨(FLD)原理被广泛用于太阳诱导叶绿素荧光(SIF)的反演,该原理假设光谱反射率是平滑的,并且可以用简单的数学函数来建模。然而,太阳、观测几何和大气特性的变化导致了氧a波段反射光谱的“驼峰”或“倾角”。这将导致SIF检索中的高估或低估。主成分分析(PCA)算法是星载SIF反演的主要方法之一,在大数据集上,由于方向性的影响,可以获得反射特征信息。本文尝试用PCA算法来检验FLD方法产生的误差是否可以被消除。结果表明,PCA算法在所有条件下都表现良好,均方根误差小于0.005,表明PCA算法可以消除太阳和观测几何形状变化引起的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1