The research and analysis of the bactericidal properties of the spacer knitted fabric with the UV-C system

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Opto-Electronics Review Pub Date : 2023-04-01 DOI:10.24425/opelre.2021.139757
E. Łada-Tondyra, A. Jakubas, B. Jabłońska, E. Stańczyk-Mazanek
{"title":"The research and analysis of the bactericidal properties of the spacer knitted fabric with the UV-C system","authors":"E. Łada-Tondyra, A. Jakubas, B. Jabłońska, E. Stańczyk-Mazanek","doi":"10.24425/opelre.2021.139757","DOIUrl":null,"url":null,"abstract":"The research and analysis of the bactericidal properties of the spacer knitted fabric with the UV-C system are presented in this paper. The disintegration factor affecting the bacteria in the knitted fabric is the UV-C radiation in the range of 265–270 nm distributed via woven optical fibres. The way of integrating elements of the system generating the UV-C radiation in the structure of the spacer knitted fabric was designed, as well as various configurations of optical fibres arrangement, fibre density, number of radiation sources, and diode types were tested. The material was contaminated with selected microorganisms indicative of sanitary contamination and important in terms of nosocomial infections. The scope of the research included microbiological (quantitative and qualitative) analyses of selected taxonomic groups of microorganisms (mesophilic bacteria, fungi, actinomycetes) before and after the irradiation process. The analysis of the research results and the applied modification of the knitted fabric turned out to be effective in reducing the amount of potentially pathogenic microorganisms.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":"50 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/opelre.2021.139757","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The research and analysis of the bactericidal properties of the spacer knitted fabric with the UV-C system are presented in this paper. The disintegration factor affecting the bacteria in the knitted fabric is the UV-C radiation in the range of 265–270 nm distributed via woven optical fibres. The way of integrating elements of the system generating the UV-C radiation in the structure of the spacer knitted fabric was designed, as well as various configurations of optical fibres arrangement, fibre density, number of radiation sources, and diode types were tested. The material was contaminated with selected microorganisms indicative of sanitary contamination and important in terms of nosocomial infections. The scope of the research included microbiological (quantitative and qualitative) analyses of selected taxonomic groups of microorganisms (mesophilic bacteria, fungi, actinomycetes) before and after the irradiation process. The analysis of the research results and the applied modification of the knitted fabric turned out to be effective in reducing the amount of potentially pathogenic microorganisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用UV-C系统对间隔针织物的杀菌性能进行了研究和分析
本文利用UV-C系统对间隔针织物的杀菌性能进行了研究和分析。影响针织物中细菌分解的因素是经编织物分布在265 ~ 270 nm范围内的UV-C辐射。设计了在间隔针织物结构中集成产生UV-C辐射的系统元件的方法,并测试了不同配置的光纤排列、纤维密度、辐射源数量和二极管类型。该材料被选定的微生物污染,表明卫生污染和重要的医院感染方面。研究范围包括辐照前后选定微生物分类群(嗜中温细菌、真菌、放线菌)的微生物学(定量和定性)分析。通过对研究结果的分析和对针织物的应用改性,可以有效地减少潜在病原微生物的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Opto-Electronics Review
Opto-Electronics Review 工程技术-工程:电子与电气
CiteScore
1.90
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged. It has been established for the publication of high quality original papers from the following fields: Optical Design and Applications, Image Processing Metamaterials, Optoelectronic Materials, Micro-Opto-Electro-Mechanical Systems, Infrared Physics and Technology, Modelling of Optoelectronic Devices, Semiconductor Lasers Technology and Fabrication of Optoelectronic Devices, Photonic Crystals, Laser Physics, Technology and Applications, Optical Sensors and Applications, Photovoltaics, Biomedical Optics and Photonics
期刊最新文献
Vibration sensing with the optical fibre Mach-Zehnder interferometer 148833 Rigorous optical modelling of long-wavelength infrared photodetector with 2D subwavelength hole array in gold film 148697 148441
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1