Chitosan Adsorbent Derivatives for Pharmaceuticals Removal from Effluents: A Review

Macromol Pub Date : 2021-05-11 DOI:10.3390/MACROMOL1020011
Efstathios V Liakos, Maria-Filothei Lazaridou, G. Michailidou, I. Koumentakou, D. Lambropoulou, D. Bikiaris, G. Kyzas
{"title":"Chitosan Adsorbent Derivatives for Pharmaceuticals Removal from Effluents: A Review","authors":"Efstathios V Liakos, Maria-Filothei Lazaridou, G. Michailidou, I. Koumentakou, D. Lambropoulou, D. Bikiaris, G. Kyzas","doi":"10.3390/MACROMOL1020011","DOIUrl":null,"url":null,"abstract":"Chitin is mentioned as the second most abundant and important natural biopolymer in worldwide scale. The main sources for the extraction and exploitation of this natural polysaccharide polymer are crabs and shrimps. Chitosan (poly-β-(1 → 4)-2-amino-2-deoxy-d-glucose) is the most important derivative of chitin and can be used in a wide variety of applications including cosmetics, pharmaceutical and biomedical applications, food, etc., giving this substance high value-added applications. Moreover, chitosan has applications in adsorption because it contains amino and hydroxyl groups in its molecules, and can thus contribute to many possible adsorption interactions between chitosan and pollutants (pharmaceuticals/drugs, metals, phenols, pesticides, etc.). However, it must be noted that one of the most important techniques of decontamination is considered to be adsorption because it is simple, low-cost, and fast. This review emphasizes on recently published research papers (2013–2021) and briefly describes the chemical modifications of chitosan (grafting, cross-linking, etc.), for the adsorption of a variety of emerging contaminants from aqueous solutions, and characterization results. Finally, tables are depicted from selected chitosan synthetic routes and the pH effects are discussed, along with the best-fitting isotherm and kinetic models.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"90 1","pages":"130-154"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MACROMOL1020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Chitin is mentioned as the second most abundant and important natural biopolymer in worldwide scale. The main sources for the extraction and exploitation of this natural polysaccharide polymer are crabs and shrimps. Chitosan (poly-β-(1 → 4)-2-amino-2-deoxy-d-glucose) is the most important derivative of chitin and can be used in a wide variety of applications including cosmetics, pharmaceutical and biomedical applications, food, etc., giving this substance high value-added applications. Moreover, chitosan has applications in adsorption because it contains amino and hydroxyl groups in its molecules, and can thus contribute to many possible adsorption interactions between chitosan and pollutants (pharmaceuticals/drugs, metals, phenols, pesticides, etc.). However, it must be noted that one of the most important techniques of decontamination is considered to be adsorption because it is simple, low-cost, and fast. This review emphasizes on recently published research papers (2013–2021) and briefly describes the chemical modifications of chitosan (grafting, cross-linking, etc.), for the adsorption of a variety of emerging contaminants from aqueous solutions, and characterization results. Finally, tables are depicted from selected chitosan synthetic routes and the pH effects are discussed, along with the best-fitting isotherm and kinetic models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖吸附剂衍生物用于废水中药物的去除研究进展
几丁质被认为是世界范围内第二丰富和重要的天然生物聚合物。这种天然多糖聚合物的提取和开发的主要来源是螃蟹和虾。壳聚糖(聚β-(1→4)-2-氨基-2-脱氧-d-葡萄糖)是几丁质最重要的衍生物,具有广泛的用途,包括化妆品、制药和生物医学、食品等,具有高附加值的应用。此外,由于壳聚糖分子中含有氨基和羟基,因此可以促进壳聚糖与污染物(药物/药物、金属、酚类、农药等)之间的许多可能的吸附相互作用,因此壳聚糖在吸附方面具有应用价值。然而,必须指出的是,最重要的去污技术之一被认为是吸附,因为它简单,低成本和快速。本文重点综述了近年来发表的研究论文(2013-2021),简要介绍了壳聚糖的化学改性(接枝、交联等),对水溶液中多种新出现的污染物的吸附,以及表征结果。最后,给出了壳聚糖合成路线的表,并讨论了pH值的影响,以及最适合的等温线和动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Different Extraction Conditions on the Physicochemical Properties of Novel High Methoxyl Pectin-like Polysaccharides from Green Bell Pepper (GBP) Recyclability Perspectives of the Most Diffused Biobased and Biodegradable Plastic Materials Autoclaving Achieves pH-Neutralization, Hydrogelation, and Sterilization of Chitosan Hydrogels in One Step Effect of Tacticity on London Dispersive Surface Energy, Polar Free Energy and Lewis Acid-Base Surface Energies of Poly Methyl Methacrylate by Inverse Gas Chromatography Synthesis and Characterisation of 4D-Printed NVCL-co-DEGDA Resin Using Stereolithography 3D Printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1