Recycling qubits in near-term quantum computers

Galit Anikeeva, Isaac H. Kim, P. Hayden
{"title":"Recycling qubits in near-term quantum computers","authors":"Galit Anikeeva, Isaac H. Kim, P. Hayden","doi":"10.1103/PhysRevA.103.042613","DOIUrl":null,"url":null,"abstract":"Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0\\ldots 0\\rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.103.042613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Quantum computers are capable of efficiently contracting unitary tensor networks, a task that is likely to remain difficult for classical computers. For instance, networks based on matrix product states or the multi-scale entanglement renormalization ansatz (MERA) can be contracted on a small quantum computer to aid the simulation of a large quantum system. However, without the ability to selectively reset qubits, the associated spatial cost can be exorbitant. In this paper, we propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form, thus dramatically reducing the spatial cost for implementing the contraction algorithm on general near-term quantum computers. This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use. In the absence of noise, we prove that the state of a subset of these qubits becomes $|0\ldots 0\rangle$, up to an error exponentially small in the number of gates applied. We also provide a numerical evidence that the protocol works in the presence of noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在近期量子计算机中回收量子位
量子计算机能够有效地收缩酉张量网络,这一任务对于经典计算机来说可能仍然很困难。例如,基于矩阵积态或多尺度纠缠重整化分析(MERA)的网络可以在小型量子计算机上收缩,以帮助模拟大型量子系统。然而,如果没有选择性重置量子位的能力,相关的空间成本可能会过高。在本文中,我们提出了一种可以在电路具有共同卷积形式时统一重置量子比特的协议,从而大大降低了在一般近期量子计算机上实现收缩算法的空间成本。该协议通过在不再使用的量子位上部分应用时间反转量子电路,从使用过的量子位生成新的量子位。在没有噪声的情况下,我们证明了这些量子位的一个子集的状态变为$|0\ldots 0\rangle$,直至应用的门数呈指数级小的误差。我们还提供了一个数值证据,证明该协议在存在噪声的情况下有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Quantum Machine Learning A Wave Nature-Based Interpretation of The Nonclassical Feature of Photon Bunching On A Beam Splitter The Future of Quantum Theory: A Way Out of the Impasse Partial Measurements of Quantum Systems Emergence of the Classical from within the Quantum Universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1