Adaptive Bayesian Channel Gain Cartography

Donghoon Lee, Dimitris Berberidis, G. Giannakis
{"title":"Adaptive Bayesian Channel Gain Cartography","authors":"Donghoon Lee, Dimitris Berberidis, G. Giannakis","doi":"10.1109/ICASSP.2018.8461412","DOIUrl":null,"url":null,"abstract":"Channel gain cartography relies on sensor measurements to construct maps providing the attenuation profile between arbitrary transmitter-receiver locations. Existing approaches capitalize on tomographic models, where shadowing is the weighted integral of a spatial loss field (SLF) depending on the propagation environment. Currently, the SLF is learned via regularization methods tailored to the propagation environment. However, the effectiveness of existing approaches remains unclear especially when the propagation environment involves heterogeneous characteristics. To cope with this, the present work considers a piecewise homogeneous SLF with a hidden Markov random field (MRF) model under the Bayesian framework. Efficient field estimators are obtained by using samples from Markov chain Monte Carlo (MCMC). Furthermore, an uncertainty sampling algorithm is developed to adaptively collect measurements. Real data tests demonstrate the capabilities of the novel approach.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"73 1","pages":"3554-3558"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Channel gain cartography relies on sensor measurements to construct maps providing the attenuation profile between arbitrary transmitter-receiver locations. Existing approaches capitalize on tomographic models, where shadowing is the weighted integral of a spatial loss field (SLF) depending on the propagation environment. Currently, the SLF is learned via regularization methods tailored to the propagation environment. However, the effectiveness of existing approaches remains unclear especially when the propagation environment involves heterogeneous characteristics. To cope with this, the present work considers a piecewise homogeneous SLF with a hidden Markov random field (MRF) model under the Bayesian framework. Efficient field estimators are obtained by using samples from Markov chain Monte Carlo (MCMC). Furthermore, an uncertainty sampling algorithm is developed to adaptively collect measurements. Real data tests demonstrate the capabilities of the novel approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应贝叶斯信道增益制图
信道增益制图依赖于传感器测量来构建提供任意发射机-接收机位置之间衰减剖面的地图。现有的方法利用层析模型,其中阴影是依赖于传播环境的空间损失场(SLF)的加权积分。目前,SLF是通过针对传播环境定制的正则化方法来学习的。然而,现有方法的有效性仍然不清楚,特别是当传播环境涉及异构特征时。为了解决这一问题,本文考虑了贝叶斯框架下具有隐马尔可夫随机场(MRF)模型的分段齐次SLF。利用马尔科夫链蒙特卡罗(MCMC)的样本得到了有效的场估计器。在此基础上,提出了一种不确定采样算法,用于自适应采集测量数据。实际数据测试证明了这种新方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1