{"title":"NO-REFERENCE IMAGE QUALITY MEASURE FOR IMAGES WITH MULTIPLE DISTORTIONS USING RANDOM FORESTS FOR MULTI METHOD FUSION","authors":"K. De, Masilamani","doi":"10.5566/IAS.1534","DOIUrl":null,"url":null,"abstract":"Over the years image quality assessment is one of the active area of research in image processing. Distortion in images can be caused by various sources like noise, blur, transmission channel errors, compression artifacts etc. Image distortions can occur during the image acquisition process (blur/noise), image compression (ringing and blocking artifacts) or during the transmission process. A single image can be distorted by multiple sources and assessing quality of such images is an extremely challenging task. The human visual system can easily identify image quality in such cases, but for a computer algorithm performing the task of quality assessment is a very difficult. In this paper, we propose a new no-reference image quality assessment for images corrupted by more than one type of distortions. The proposed technique is compared with the best-known framework for image quality assessment for multiply distorted images and standard state of the art Full reference and No-reference image quality assessment techniques available. ","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1534","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Over the years image quality assessment is one of the active area of research in image processing. Distortion in images can be caused by various sources like noise, blur, transmission channel errors, compression artifacts etc. Image distortions can occur during the image acquisition process (blur/noise), image compression (ringing and blocking artifacts) or during the transmission process. A single image can be distorted by multiple sources and assessing quality of such images is an extremely challenging task. The human visual system can easily identify image quality in such cases, but for a computer algorithm performing the task of quality assessment is a very difficult. In this paper, we propose a new no-reference image quality assessment for images corrupted by more than one type of distortions. The proposed technique is compared with the best-known framework for image quality assessment for multiply distorted images and standard state of the art Full reference and No-reference image quality assessment techniques available.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.