{"title":"Unsupervised multiview learning with partial distribution information","authors":"Shashini De Silva, Jinsub Kim, R. Raich","doi":"10.1109/MLSP.2017.8168138","DOIUrl":null,"url":null,"abstract":"We consider a training data collection mechanism wherein, instead of annotating each training instance with a class label, additional features drawn from a known class-conditional distribution are acquired concurrently. Considering true labels as latent variables, a maximum likelihood approach is proposed to train a classifier based on these unlabeled training data. Furthermore, the case of correlated training instances is considered, wherein latent label variables for subsequently collected training instances form a first-order Markov chain. A convex optimization approach and expectation-maximization algorithms are presented to train classifiers. The efficacy of the proposed approach is validated using the experiments with the iris data and the MNIST handwritten digit data.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a training data collection mechanism wherein, instead of annotating each training instance with a class label, additional features drawn from a known class-conditional distribution are acquired concurrently. Considering true labels as latent variables, a maximum likelihood approach is proposed to train a classifier based on these unlabeled training data. Furthermore, the case of correlated training instances is considered, wherein latent label variables for subsequently collected training instances form a first-order Markov chain. A convex optimization approach and expectation-maximization algorithms are presented to train classifiers. The efficacy of the proposed approach is validated using the experiments with the iris data and the MNIST handwritten digit data.