{"title":"A two-step elastic full-waveform inversion applied to reflection seismic data for shallow hazard identification","authors":"A. Tognarelli, M. Aleardi","doi":"10.3301/ROL.2017.30","DOIUrl":null,"url":null,"abstract":"We apply a two-step elastic full-waveform inversion (FWI) to well-site survey (WSS) marine seismic data to estimate high-resolution P-wave (Vp) and S-wave (Vs) velocity models. Our approach combines a first global, genetic-algorithm optimization and a subsequent gradient-based inversion. The broad-band frequency content of the available seismic data makes it possible to extend the frequency range considered in the inversion up to 70 Hz and thus to derive a high-resolution elastic characterization of the shallowest part of the subsurface. The lack of low frequencies and the limited maximum source-to-receiver offset of the WSS acquisition, make the GA inversion particularly crucial as it provides a starting model for the gradient-based FWI that contains the large-medium wavelengths of the seismic velocity field. The following gradient-based FWI yields Vp and Vs models characterized by an improved resolution with respect to the outcomes of GA-FWI. The match between the observed and the predicted seismic data proves the reliability of our predictions.","PeriodicalId":55341,"journal":{"name":"Bollettino Della Societa Geologica Italiana","volume":"43 1","pages":"11-16"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bollettino Della Societa Geologica Italiana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3301/ROL.2017.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We apply a two-step elastic full-waveform inversion (FWI) to well-site survey (WSS) marine seismic data to estimate high-resolution P-wave (Vp) and S-wave (Vs) velocity models. Our approach combines a first global, genetic-algorithm optimization and a subsequent gradient-based inversion. The broad-band frequency content of the available seismic data makes it possible to extend the frequency range considered in the inversion up to 70 Hz and thus to derive a high-resolution elastic characterization of the shallowest part of the subsurface. The lack of low frequencies and the limited maximum source-to-receiver offset of the WSS acquisition, make the GA inversion particularly crucial as it provides a starting model for the gradient-based FWI that contains the large-medium wavelengths of the seismic velocity field. The following gradient-based FWI yields Vp and Vs models characterized by an improved resolution with respect to the outcomes of GA-FWI. The match between the observed and the predicted seismic data proves the reliability of our predictions.