E. Akulinin, O. Golubyatnikov, D. Dvoretsky, S. Dvoretsky
{"title":"Methodology for creating and studying units \nfor adsorption separation and purification of gas mixtures","authors":"E. Akulinin, O. Golubyatnikov, D. Dvoretsky, S. Dvoretsky","doi":"10.17277/jamt.2021.03.pp.179-203","DOIUrl":null,"url":null,"abstract":"Methodology for creating and studying technological processes and resource-saving units for adsorption separation and purification of gas mixtures (atmospheric air, synthesis gas) with cyclically changing pressure was developed. A problem-oriented hardware-software complex designed to study the properties and operation regimes of units for adsorption separation of gas mixtures and extraction of product gases was created. The complex can also be used to prepare initial data for the design of industrial units for separation and purification of gas mixtures by the method of pressure swing adsorption. The coefficients of mass transfer and mass conductivity in the adsorbent were calculated for the processes during adsorption and desorption of the adsorptive (nitrogen, oxygen, carbon dioxide and monoxide, hydrogen) using experimentally obtained kinetic curves, and the adequacy of mathematical models was established. Using the hardware-software complex, experimental and numerical studies of technological processes for extraction of product gases (oxygen and hydrogen with a purity of 45 to 95.5 vol.%, from 99 to 99.99 vol.%, respectively), the effect of mass and heat exchange processes and operating variables (“adsorption-desorption” cycle time, pressure at the adsorption step), disturbing influences (composition and temperature of the initial gas mixture) on the performance indicators of the pressure swing adsorption unit were carried out.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Journal of Advanced Materials and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17277/jamt.2021.03.pp.179-203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Methodology for creating and studying technological processes and resource-saving units for adsorption separation and purification of gas mixtures (atmospheric air, synthesis gas) with cyclically changing pressure was developed. A problem-oriented hardware-software complex designed to study the properties and operation regimes of units for adsorption separation of gas mixtures and extraction of product gases was created. The complex can also be used to prepare initial data for the design of industrial units for separation and purification of gas mixtures by the method of pressure swing adsorption. The coefficients of mass transfer and mass conductivity in the adsorbent were calculated for the processes during adsorption and desorption of the adsorptive (nitrogen, oxygen, carbon dioxide and monoxide, hydrogen) using experimentally obtained kinetic curves, and the adequacy of mathematical models was established. Using the hardware-software complex, experimental and numerical studies of technological processes for extraction of product gases (oxygen and hydrogen with a purity of 45 to 95.5 vol.%, from 99 to 99.99 vol.%, respectively), the effect of mass and heat exchange processes and operating variables (“adsorption-desorption” cycle time, pressure at the adsorption step), disturbing influences (composition and temperature of the initial gas mixture) on the performance indicators of the pressure swing adsorption unit were carried out.