Correction to: "Reducing 'Structure From Motion': A General Framework for Dynamic Vision Part 2: Implementation and Experimental Assessment"

Stefano Soatto, P. Perona
{"title":"Correction to: \"Reducing 'Structure From Motion': A General Framework for Dynamic Vision Part 2: Implementation and Experimental Assessment\"","authors":"Stefano Soatto, P. Perona","doi":"10.1109/TPAMI.1998.10001","DOIUrl":null,"url":null,"abstract":"A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Despite the fact that all methods may be derived from a “natural” dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the applications and the goals one is targeting. We want to characterize and compare the properties of each model such that the engineer may choose the one best suited to the specific application. We analyze the properties of filters derived from each dynamical model under a variety of experimental conditions, assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate.","PeriodicalId":13207,"journal":{"name":"IEEE Trans. Pattern Anal. Mach. Intell.","volume":"25 1","pages":"1117"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Pattern Anal. Mach. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.1998.10001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A number of methods have been proposed in the literature for estimating scene-structure and ego-motion from a sequence of images using dynamical models. Despite the fact that all methods may be derived from a “natural” dynamical model within a unified framework, from an engineering perspective there are a number of trade-offs that lead to different strategies depending upon the applications and the goals one is targeting. We want to characterize and compare the properties of each model such that the engineer may choose the one best suited to the specific application. We analyze the properties of filters derived from each dynamical model under a variety of experimental conditions, assess the accuracy of the estimates, their robustness to measurement noise, sensitivity to initial conditions and visual angle, effects of the bas-relief ambiguity and occlusions, dependence upon the number of image measurements and their sampling rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
更正:“从运动中减少结构:动态视觉的一般框架第2部分:实施和实验评估”
文献中已经提出了许多方法,利用动态模型从一系列图像中估计场景结构和自我运动。尽管所有方法都可以从统一框架内的“自然”动态模型中派生出来,但从工程的角度来看,根据应用程序和目标的不同,有许多权衡会导致不同的策略。我们想要描述和比较每个模型的属性,以便工程师可以选择最适合特定应用的模型。我们分析了在各种实验条件下由每个动态模型导出的滤波器的特性,评估了估计的准确性,它们对测量噪声的鲁棒性,对初始条件和视角的敏感性,浅地形模糊和遮挡的影响,对图像测量数量及其采样率的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction to the Special Section on Computational Photography Guest Editorial: Image and Video Inpainting and Denoising Introduction of New Associate Editors AE Introduction Obituary Jean Claude Simon 1924 to 2000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1