{"title":"On the performance of ultra-reliable decode and forward relaying under the finite blocklength","authors":"Parisa Nouri, H. Alves, M. Latva-aho","doi":"10.1109/EuCNC.2017.7980736","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the performance of the decode-and-forward (DF) relaying protocols with finite blocklength (FB). We provide the overall outage probability of three distinct DF relaying protocols, where the channels are assumed to be quasi static Rayleigh fading. More importantly, we derive the closed form expressions of the outage probability in the three relaying scenarios. We illustrate protocols where the cooperative communications outperform the direct transmission (DT). In addition, we compare the operating efficiency of the cooperative schemes in the ultra-reliable (UR) region.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, we examine the performance of the decode-and-forward (DF) relaying protocols with finite blocklength (FB). We provide the overall outage probability of three distinct DF relaying protocols, where the channels are assumed to be quasi static Rayleigh fading. More importantly, we derive the closed form expressions of the outage probability in the three relaying scenarios. We illustrate protocols where the cooperative communications outperform the direct transmission (DT). In addition, we compare the operating efficiency of the cooperative schemes in the ultra-reliable (UR) region.