Pan Su, JieChang Wu, Guanghui Chang, Shuyong Liu, Xuejiao Feng
{"title":"The Leakage Identification and Location of Ship Pipeline System Based on Vibration Signal Processing","authors":"Pan Su, JieChang Wu, Guanghui Chang, Shuyong Liu, Xuejiao Feng","doi":"10.1155/2023/9646710","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The leakage of the ship’s pipeline system will bring great risks to the engine equipment and seriously threaten the vitality of the ship. In this paper, the pipeline leakage detection and localization research are carried out based on the vibration signal generated by pipeline leakage. First, the finite element model of the pipeline is constructed to obtain the variation law of the vibration signal when the pipeline leaks are carried out. Second, the vibration signal is processed based on the variational mode decomposition (VMD) and radial basis function (RBF) neural networks. The wavelet packet threshold noise reduction is conducted before signal decomposition to improve the signal-to-noise ratio. Then, the denoised signal is decomposed by VMD. The effective component is identified by analyzing the correlation coefficient between the component and the denoised signal. The center frequency and energy of the effective component are used as feature vector to train the RBF neural network to identify and locate leakage. Finally, a pipeline leakage test platform is built under laboratory conditions. After processing the data samples collected from the test, the RBF neural network is trained to identify and locate leaks. The test sample identification results show that the leak identification and localization method based on VMD-RBF has a high accuracy.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2023 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/9646710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/9646710","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The leakage of the ship’s pipeline system will bring great risks to the engine equipment and seriously threaten the vitality of the ship. In this paper, the pipeline leakage detection and localization research are carried out based on the vibration signal generated by pipeline leakage. First, the finite element model of the pipeline is constructed to obtain the variation law of the vibration signal when the pipeline leaks are carried out. Second, the vibration signal is processed based on the variational mode decomposition (VMD) and radial basis function (RBF) neural networks. The wavelet packet threshold noise reduction is conducted before signal decomposition to improve the signal-to-noise ratio. Then, the denoised signal is decomposed by VMD. The effective component is identified by analyzing the correlation coefficient between the component and the denoised signal. The center frequency and energy of the effective component are used as feature vector to train the RBF neural network to identify and locate leakage. Finally, a pipeline leakage test platform is built under laboratory conditions. After processing the data samples collected from the test, the RBF neural network is trained to identify and locate leaks. The test sample identification results show that the leak identification and localization method based on VMD-RBF has a high accuracy.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.