Estimation of daily mean temperatures: an accurate method for the Douro Valley

IF 1.1 4区 农林科学 Q4 FOOD SCIENCE & TECHNOLOGY Ciencia E Tecnica Vitivinicola Pub Date : 2018-01-01 DOI:10.1051/CTV/20183302167
António C. Real, J. Borges, Carlos A. S. Oliveira
{"title":"Estimation of daily mean temperatures: an accurate method for the Douro Valley","authors":"António C. Real, J. Borges, Carlos A. S. Oliveira","doi":"10.1051/CTV/20183302167","DOIUrl":null,"url":null,"abstract":"Air temperature data from many locations worldwide are only available as series of daily minima and maxima temperatures. Historically, several different approaches have been used to estimate the actual daily mean temperature, as only in the last two or three decades automatic thermometers are able to compute its actual value. The most common approach is to estimate it by averaging the daily minima and maxima. When only daily minima and maxima are available, an alternative approach, proposed by Dall’Amico and Hornsteiner in 2006, uses the two daily extremes together with next day minima temperature and a coefficient related to the local daily astronomical sunset time. Additionally, the method uses two optimizable coefficients related to the region’s temperature profile. In order to use this approach it is necessary to optimize the region’s unknown parameters. For this optimization, it is necessary a dataset containing the maxima, minima, and the actual daily mean temperatures for at least one year. In this research, for the period 2007-2014, we used three datasets of minima, maxima and actual mean temperatures obtained at three automatic meteorological stations located in the Douro Valley to optimize the two unknown parameters in the Dall’Amico and Hornsteiner approach. Moreover, we compared the actual mean daily temperatures available from the three datasets with the correspondent values estimated by using i) the usual approach of averaging the daily maxima and minima temperatures and ii) the Dall’Amico and Hornsteiner approach. Results show that the former approach overestimates, on average, the daily mean temperatures by 0.5oC. The Dall’Amico and Hornsteiner approach showed to be a better approximation of mean temperatures for the three meteorological stations used in this research, being unbiased relative to the actual mean values of daily temperatures. In conclusion, this research confirms that the Dall’Amico and Hornsteiner is a better approach to estimate the mean daily temperatures and provides the optimized parameters for three sites located at each of the three sub-regions of the Douro Valley (Baixo Corgo, Cima Corgo and Douro Superior ).","PeriodicalId":54244,"journal":{"name":"Ciencia E Tecnica Vitivinicola","volume":"62 1","pages":"167-176"},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia E Tecnica Vitivinicola","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1051/CTV/20183302167","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Air temperature data from many locations worldwide are only available as series of daily minima and maxima temperatures. Historically, several different approaches have been used to estimate the actual daily mean temperature, as only in the last two or three decades automatic thermometers are able to compute its actual value. The most common approach is to estimate it by averaging the daily minima and maxima. When only daily minima and maxima are available, an alternative approach, proposed by Dall’Amico and Hornsteiner in 2006, uses the two daily extremes together with next day minima temperature and a coefficient related to the local daily astronomical sunset time. Additionally, the method uses two optimizable coefficients related to the region’s temperature profile. In order to use this approach it is necessary to optimize the region’s unknown parameters. For this optimization, it is necessary a dataset containing the maxima, minima, and the actual daily mean temperatures for at least one year. In this research, for the period 2007-2014, we used three datasets of minima, maxima and actual mean temperatures obtained at three automatic meteorological stations located in the Douro Valley to optimize the two unknown parameters in the Dall’Amico and Hornsteiner approach. Moreover, we compared the actual mean daily temperatures available from the three datasets with the correspondent values estimated by using i) the usual approach of averaging the daily maxima and minima temperatures and ii) the Dall’Amico and Hornsteiner approach. Results show that the former approach overestimates, on average, the daily mean temperatures by 0.5oC. The Dall’Amico and Hornsteiner approach showed to be a better approximation of mean temperatures for the three meteorological stations used in this research, being unbiased relative to the actual mean values of daily temperatures. In conclusion, this research confirms that the Dall’Amico and Hornsteiner is a better approach to estimate the mean daily temperatures and provides the optimized parameters for three sites located at each of the three sub-regions of the Douro Valley (Baixo Corgo, Cima Corgo and Douro Superior ).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
每日平均温度的估计:杜罗河河谷的一种精确方法
世界上许多地方的气温数据只有每日最低和最高气温的系列。历史上,有几种不同的方法被用来估计实际的日平均温度,因为只有在过去的二三十年里,自动温度计才能计算出它的实际值。最常见的方法是通过每日最小值和最大值的平均值来估计它。当只有日极小值和日极大值可用时,Dall 'Amico和Hornsteiner在2006年提出了另一种方法,将两个日极值与第二天的最低温度和与当地日天文日落时间相关的系数一起使用。此外,该方法使用两个与该地区的温度分布相关的可优化系数。为了使用这种方法,有必要对区域的未知参数进行优化。对于这种优化,需要一个包含至少一年的最大值、最小值和实际日平均温度的数据集。本研究利用2007-2014年Douro流域3个自动气象站的最小、最高和实际平均气温数据集,对Dall 'Amico和Hornsteiner方法中的两个未知参数进行了优化。此外,我们将三个数据集的实际日平均温度与常用的日最高和最低温度平均方法和Dall 'Amico和Hornsteiner方法估计的相应值进行了比较。结果表明,前一种方法平均高估日平均气温0.5℃。Dall 'Amico和Hornsteiner方法表明,对于本研究中使用的三个气象站的平均温度,Dall 'Amico和Hornsteiner方法是一个更好的近似值,相对于每日温度的实际平均值是无偏的。综上所述,本研究证实了Dall 'Amico和Hornsteiner是较好的日平均温度估算方法,并为Douro Valley三个子区域(Baixo Corgo, Cima Corgo和Douro Superior)的三个站点提供了优化参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ciencia E Tecnica Vitivinicola
Ciencia E Tecnica Vitivinicola Agricultural and Biological Sciences-Food Science
自引率
12.50%
发文量
5
期刊介绍: Ciência e Técnica Vitivinícola (Journal of Viticulture and Enology) is an international journal that publishes original articles, research notes and review articles, written in Portuguese or in English, on the various fields of the science and technology of vine and wine: Viticulture, Enology and Vitivinicultural economy.
期刊最新文献
Monitoring of mycotoxins and pesticides in winemaking Contributo para a caracterização de vinhos de oito castas portuguesas minoritárias Effect of drought on aquaporin expression in grafted and ungrafted grapevine cultivars Chitosan application towards the improvement of grapevine performance and wine quality Arbuscular mycorrhizal fungi inoculation as strategy to mitigate copper toxicity in young field-grown vines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1