Note on local mixing techniques for stochastic differential equations

A. Veretennikov
{"title":"Note on local mixing techniques for stochastic differential equations","authors":"A. Veretennikov","doi":"10.15559/21-VMSTA174","DOIUrl":null,"url":null,"abstract":"This paper discusses several techniques which may be used for applying the coupling method to solutions of stochastic differential equations (SDEs). They all work in dimension $d\\ge 1$, although, in $d=1$ the most natural way is to use intersections of trajectories, which requires nothing but strong Markov property and non-degeneracy of the diffusion coefficient. In dimensions $d>1$ it is possible to use embedded Markov chains either by considering discrete times $n=0,1,\\ldots$, or by arranging special stopping time sequences and to use local Markov -- Dobrushin's (MD) condition. Further applications may be based on one or another version of the MD condition. For studies of convergence and mixing rates the (Markov) process must be strong Markov and recurrent; however, recurrence is a separate issue which is not discussed in this paper.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/21-VMSTA174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper discusses several techniques which may be used for applying the coupling method to solutions of stochastic differential equations (SDEs). They all work in dimension $d\ge 1$, although, in $d=1$ the most natural way is to use intersections of trajectories, which requires nothing but strong Markov property and non-degeneracy of the diffusion coefficient. In dimensions $d>1$ it is possible to use embedded Markov chains either by considering discrete times $n=0,1,\ldots$, or by arranging special stopping time sequences and to use local Markov -- Dobrushin's (MD) condition. Further applications may be based on one or another version of the MD condition. For studies of convergence and mixing rates the (Markov) process must be strong Markov and recurrent; however, recurrence is a separate issue which is not discussed in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机微分方程的局部混合技术
本文讨论了将耦合方法应用于随机微分方程解的几种技术。它们都在d=1维中有效,尽管在d=1维中最自然的方法是使用轨迹相交,这只需要很强的马尔可夫性质和扩散系数的非简并性。在维度$d>1$中,可以通过考虑离散时间$n=0,1,\ldots$,或通过安排特殊的停止时间序列并使用局部马尔可夫- Dobrushin (MD)条件来使用嵌入马尔可夫链。进一步的应用可能基于MD条件的一个或另一个版本。对于收敛速率和混合速率的研究,马尔可夫过程必须是强马尔可夫和循环的;然而,递归是一个单独的问题,本文不讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic laws of summands I: square integrable independent random variables On cyclic and nontransitive probabilities At the edge of a one-dimensional jellium Population genetic models of dormancy Optimal and algorithmic norm regularization of random matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1