Combining semantic scene priors and haze removal for single image depth estimation

Ke Wang, Enrique Dunn, Joseph Tighe, Jan-Michael Frahm
{"title":"Combining semantic scene priors and haze removal for single image depth estimation","authors":"Ke Wang, Enrique Dunn, Joseph Tighe, Jan-Michael Frahm","doi":"10.1109/WACV.2014.6836021","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the relative depth of a scene from a monocular image. The dark channel prior, used as a statistical observation of haze free images, has been previously leveraged for haze removal and relative depth estimation tasks. However, as a local measure, it fails to account for higher order semantic relationship among scene elements. We propose a dual channel prior used for identifying pixels that are unlikely to comply with the dark channel assumption, leading to erroneous depth estimates. We further leverage semantic segmentation information and patch match label propagation to enforce semantically consistent geometric priors. Experiments illustrate the quantitative and qualitative advantages of our approach when compared to state of the art methods.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"16 1","pages":"800-807"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We consider the problem of estimating the relative depth of a scene from a monocular image. The dark channel prior, used as a statistical observation of haze free images, has been previously leveraged for haze removal and relative depth estimation tasks. However, as a local measure, it fails to account for higher order semantic relationship among scene elements. We propose a dual channel prior used for identifying pixels that are unlikely to comply with the dark channel assumption, leading to erroneous depth estimates. We further leverage semantic segmentation information and patch match label propagation to enforce semantically consistent geometric priors. Experiments illustrate the quantitative and qualitative advantages of our approach when compared to state of the art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合语义场景先验和去雾的单幅图像深度估计
我们考虑了从单目图像中估计场景相对深度的问题。暗通道先验,用作无雾霾图像的统计观测,以前已用于雾霾去除和相对深度估计任务。然而,作为一种局部度量,它无法考虑场景元素之间的高阶语义关系。我们提出了一个双通道先验用于识别像素不太可能符合暗通道假设,导致错误的深度估计。我们进一步利用语义分割信息和补丁匹配标签传播来强制语义一致的几何先验。实验表明,与最先进的方法相比,我们的方法具有定量和定性的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1