Nine-Point Iterated Rectangle Dichotomy for Finding All Local Minima of Unknown Bounded Surface

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2022-12-01 DOI:10.2478/acss-2022-0010
V. Romanuke
{"title":"Nine-Point Iterated Rectangle Dichotomy for Finding All Local Minima of Unknown Bounded Surface","authors":"V. Romanuke","doi":"10.2478/acss-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract A method is suggested to find all local minima and the global minimum of an unknown two-variable function bounded on a given rectangle regardless of the rectangle area. The method has eight inputs: five inputs defined straightforwardly and three inputs, which are adjustable. The endpoints of the initial intervals constituting the rectangle and a formula for evaluating the two-variable function at any point of this rectangle are the straightforward inputs. The three adjustable inputs are a tolerance with the minimal and maximal numbers of subintervals along each dimension. The tolerance is the secondary adjustable input. Having broken the initial rectangle into a set of subrectangles, the nine-point iterated rectangle dichotomy “gropes” around every local minimum by successively cutting off 75 % of the subrectangle area or dividing the subrectangle in four. A range of subrectangle sets defined by the minimal and maximal numbers of subintervals along each dimension is covered by running the nine-point rectangle dichotomy on every set of subrectangles. As a set of values of currently found local minima points changes no more than by the tolerance, the set of local minimum points and the respective set of minimum values of the surface are returned. The presented approach is applicable to whichever task of finding local extrema is. If primarily the purpose is to find all local maxima or the global maximum of the two-variable function, the presented approach is applied to the function taken with the negative sign. The presented approach is a significant and important contribution to the field of numerical estimation and approximate analysis. Although the method does not assure obtaining all local minima (or maxima) for any two-variable function, setting appropriate minimal and maximal numbers of subintervals makes missing some minima (or maxima) very unlikely.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"50 1","pages":"89 - 100"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2022-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A method is suggested to find all local minima and the global minimum of an unknown two-variable function bounded on a given rectangle regardless of the rectangle area. The method has eight inputs: five inputs defined straightforwardly and three inputs, which are adjustable. The endpoints of the initial intervals constituting the rectangle and a formula for evaluating the two-variable function at any point of this rectangle are the straightforward inputs. The three adjustable inputs are a tolerance with the minimal and maximal numbers of subintervals along each dimension. The tolerance is the secondary adjustable input. Having broken the initial rectangle into a set of subrectangles, the nine-point iterated rectangle dichotomy “gropes” around every local minimum by successively cutting off 75 % of the subrectangle area or dividing the subrectangle in four. A range of subrectangle sets defined by the minimal and maximal numbers of subintervals along each dimension is covered by running the nine-point rectangle dichotomy on every set of subrectangles. As a set of values of currently found local minima points changes no more than by the tolerance, the set of local minimum points and the respective set of minimum values of the surface are returned. The presented approach is applicable to whichever task of finding local extrema is. If primarily the purpose is to find all local maxima or the global maximum of the two-variable function, the presented approach is applied to the function taken with the negative sign. The presented approach is a significant and important contribution to the field of numerical estimation and approximate analysis. Although the method does not assure obtaining all local minima (or maxima) for any two-variable function, setting appropriate minimal and maximal numbers of subintervals makes missing some minima (or maxima) very unlikely.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求未知有界曲面所有局部极小值的九点迭代矩形二分法
摘要提出了一种求未知二变量函数在给定矩形上的所有局部极小值和全局极小值的方法,与矩形面积无关。该方法有八个输入:五个直接定义的输入和三个可调整的输入。构成矩形的初始区间的端点和在矩形任意点处计算双变量函数的公式是直接的输入。三个可调输入是沿每个维度的子区间的最小和最大数量的公差。公差是次级可调输入。将初始矩形分解成一组子矩形后,9点迭代矩形二分法通过连续切断75%的子矩形面积或将子矩形分成4个来“摸索”每个局部最小值。通过对每个子矩形集运行九点矩形二分类,可以覆盖由每个维度上的最小和最大子区间数定义的子矩形集范围。由于当前找到的局部极小点的一组值的变化不超过公差,因此返回局部极小点集和各自的曲面极小值集。所提出的方法适用于任何求局部极值的任务。如果主要目的是求两变量函数的所有局部最大值或全局最大值,则所提出的方法适用于带负号的函数。本文提出的方法对数值估计和近似分析领域作出了重大贡献。虽然该方法不能保证获得任何两变量函数的所有局部最小值(或最大值),但设置适当的最小和最大子区间数使丢失某些最小值(或最大值)的可能性很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1