Dense Receptive Field for Object Detection

Yao Yongqiang, Dong Yuan, Huang Zesang, Bai Hongliang
{"title":"Dense Receptive Field for Object Detection","authors":"Yao Yongqiang, Dong Yuan, Huang Zesang, Bai Hongliang","doi":"10.1109/ICPR.2018.8546207","DOIUrl":null,"url":null,"abstract":"Current one-stage single-shot detectors such as DSSD and StairNet based on aggregating context information from multiple scales have shown promising accuracy. However, existing multi-scale context fusion techniques are insufficient for detecting objects of different scales. In this paper, we investigate how to detect different objects with different scales with respect to accuracy-vs-speed trade-off. We propose a novel single-shot based detector, called DRFNet which fuses feature maps with different sizes of the receptive field to boost the detection accuracy. Our final model DRFNet detector unifies comprehensive context information from various receptive fields effectively to enable it to detect objects in different sizes with higher accuracy. Experimental results on PASCAL VOC 2007 benchmark (79.6% mAP, 68 FPS) demonstrate that DRFNet is better than other state-of-the-art one-stage detectors similar to FPN. Code is released at https://github.com/yqyao/DRFNet.","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"15 1","pages":"1815-1820"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2018.8546207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Current one-stage single-shot detectors such as DSSD and StairNet based on aggregating context information from multiple scales have shown promising accuracy. However, existing multi-scale context fusion techniques are insufficient for detecting objects of different scales. In this paper, we investigate how to detect different objects with different scales with respect to accuracy-vs-speed trade-off. We propose a novel single-shot based detector, called DRFNet which fuses feature maps with different sizes of the receptive field to boost the detection accuracy. Our final model DRFNet detector unifies comprehensive context information from various receptive fields effectively to enable it to detect objects in different sizes with higher accuracy. Experimental results on PASCAL VOC 2007 benchmark (79.6% mAP, 68 FPS) demonstrate that DRFNet is better than other state-of-the-art one-stage detectors similar to FPN. Code is released at https://github.com/yqyao/DRFNet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对象检测的密集接受场
目前,DSSD和StairNet等基于多尺度上下文信息聚合的单阶段单镜头检测器已经显示出良好的准确性。然而,现有的多尺度上下文融合技术不足以检测不同尺度的目标。在本文中,我们研究了如何检测不同尺度的不同目标,并考虑了精度与速度的权衡。我们提出了一种新的基于单镜头的检测器,称为DRFNet,它融合了不同大小的感受野的特征图来提高检测精度。我们的最终模型DRFNet检测器有效地统一了来自各种接受野的综合上下文信息,使其能够以更高的精度检测不同大小的物体。在PASCAL VOC 2007基准(79.6% mAP, 68 FPS)上的实验结果表明,DRFNet比其他最先进的类似FPN的单级检测器更好。代码发布在https://github.com/yqyao/DRFNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Complexity of Representations in Deep Learning Extraction of Ruler Markings For Estimating Physical Size of Oral Lesions. TensorMixup Data Augmentation Method for Fully Automatic Brain Tumor Segmentation Classifying Breast Histopathology Images with a Ductal Instance-Oriented Pipeline. Directionally Paired Principal Component Analysis for Bivariate Estimation Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1