Shear buckling of ship plates with different holes

IF 1.2 4区 工程技术 Q3 ENGINEERING, MECHANICAL Mechanics & Industry Pub Date : 2022-01-01 DOI:10.1051/meca/2022004
Zhao Zhu, Xiaowen Li, Q. Chen, Yingqiang Cai
{"title":"Shear buckling of ship plates with different holes","authors":"Zhao Zhu, Xiaowen Li, Q. Chen, Yingqiang Cai","doi":"10.1051/meca/2022004","DOIUrl":null,"url":null,"abstract":"Based on the first-order shear deformation theory, numerical methods and mechanical experiments, the shear buckling characteristics of hull plates with different holes are investigated. Through eigenvalue buckling analysis, the critical buckling stress of square plate with hole under uniform shear load on four edges was calculated. The relationship between the critical shear stress and the hole type, hole size and plate thickness was obtained by parameterization. The reduction coefficient (ki) was defined to characterize the effect of the hole on the plate, and the reduction effect of circular hole, square hole and fillet square hole was simplified by graph and fitting polynomial. The results show that the critical buckling shear stress obtained from numerical simulation is in good agreement with the experimental value. For different types of holes, the critical buckling shear stress of the square plate has the same trend with the plate thickness. Both plate thickness and hole size have great influence on the shear stability of the perforated square plate. When the hole size is constant, the critical shear stress increases with the increase of plate thickness. The smaller the hole size is, the greater the influence of plate thickness. The critical shear stress decreases with the increase of hole size, and there is a similar linear relationship. The smaller the plate thickness, the more obvious the linear relationship. In addition, based on the reduction coefficient curve or fitting polynomial proposed in this paper, the influence rules of the three different holes on the shear stability of hull plates can be obtained quickly and effectively, thus providing a useful reference for the design optimization and mechanical property evaluation of ship structures with holes.","PeriodicalId":49018,"journal":{"name":"Mechanics & Industry","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & Industry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1051/meca/2022004","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the first-order shear deformation theory, numerical methods and mechanical experiments, the shear buckling characteristics of hull plates with different holes are investigated. Through eigenvalue buckling analysis, the critical buckling stress of square plate with hole under uniform shear load on four edges was calculated. The relationship between the critical shear stress and the hole type, hole size and plate thickness was obtained by parameterization. The reduction coefficient (ki) was defined to characterize the effect of the hole on the plate, and the reduction effect of circular hole, square hole and fillet square hole was simplified by graph and fitting polynomial. The results show that the critical buckling shear stress obtained from numerical simulation is in good agreement with the experimental value. For different types of holes, the critical buckling shear stress of the square plate has the same trend with the plate thickness. Both plate thickness and hole size have great influence on the shear stability of the perforated square plate. When the hole size is constant, the critical shear stress increases with the increase of plate thickness. The smaller the hole size is, the greater the influence of plate thickness. The critical shear stress decreases with the increase of hole size, and there is a similar linear relationship. The smaller the plate thickness, the more obvious the linear relationship. In addition, based on the reduction coefficient curve or fitting polynomial proposed in this paper, the influence rules of the three different holes on the shear stability of hull plates can be obtained quickly and effectively, thus providing a useful reference for the design optimization and mechanical property evaluation of ship structures with holes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同孔型船舶板的剪切屈曲
基于一阶剪切变形理论、数值方法和力学实验,研究了不同孔洞船体板的剪切屈曲特性。通过特征值屈曲分析,计算了四边均布剪切作用下带孔方板的临界屈曲应力。通过参数化得到了临界剪应力与孔型、孔尺寸和板厚之间的关系。定义了表征孔对板的影响的折减系数ki,并通过图和拟合多项式对圆孔、方孔和圆角方孔的折减效果进行了简化。结果表明,数值模拟得到的临界屈曲剪应力与实验值吻合较好。对于不同孔型的方板,其临界屈曲剪应力随板厚的变化趋势相同。板厚和孔尺寸对带孔方板的剪切稳定性影响较大。当孔尺寸一定时,临界剪应力随板厚的增加而增大。孔尺寸越小,板厚的影响越大。临界剪应力随孔尺寸的增大而减小,且存在类似的线性关系。板厚越小,线性关系越明显。此外,基于本文提出的折减系数曲线或拟合多项式,可以快速有效地获得三种不同孔对船体板剪切稳定性的影响规律,从而为带孔船舶结构的设计优化和力学性能评价提供有益的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics & Industry
Mechanics & Industry ENGINEERING, MECHANICAL-MECHANICS
CiteScore
2.80
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: An International Journal on Mechanical Sciences and Engineering Applications With papers from industry, Research and Development departments and academic institutions, this journal acts as an interface between research and industry, coordinating and disseminating scientific and technical mechanical research in relation to industrial activities. Targeted readers are technicians, engineers, executives, researchers, and teachers who are working in industrial companies as managers or in Research and Development departments, technical centres, laboratories, universities, technical and engineering schools. The journal is an AFM (Association Française de Mécanique) publication.
期刊最新文献
Numerical investigation of thermal buckling and post-buckling behavior of an EN AW 6016-T4 car roof assembled in a steel body-in-white Analyzing the influence of lifter design and ball mill speed on grinding performance, particle behavior and contact forces A neural network-based data-driven local modeling of spotwelded plates under impact Multi-objective shape optimization of developable Bézier-like surfaces using non-dominated sorting genetic algorithm Experimental quantification of heat haze errors in stereo-DIC displacements: Application to thermoplastics thermoforming temperature range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1