Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-07-03 DOI:10.1080/20964471.2021.1939243
Bin Chen, Bing Xu, P. Gong
{"title":"Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities","authors":"Bin Chen, Bing Xu, P. Gong","doi":"10.1080/20964471.2021.1939243","DOIUrl":null,"url":null,"abstract":"ABSTRACT Urban land use information that reflects socio-economic functions and human activities is critically essential for urban planning, landscape design, environmental management, health promotion, and biodiversity conservation. Land-use maps outlining the distribution, pattern, and composition of essential urban land use categories (EULUC) have facilitated a wide spectrum of applications and further triggered new opportunities in urban studies. New and improved Earth observations, algorithms, and advanced products for extracting thematic urban information, in association with emerging social sensing big data and auxiliary crowdsourcing datasets, all together offer great potentials to mapping fine-resolution EULUC from regional to global scales. Here we review the advances of EULUC mapping research and practices in terms of their data, methods, and applications. Based on the historical retrospect, we summarize the challenges and limitations of current EULUC studies regarding sample collection, mixed land use problem, data and model generalization, and large-scale mapping efforts. Finally, we propose and discuss future opportunities, including cross-scale mapping, optimal integration of multi-source features, global sample libraries from crowdsourcing approaches, advanced machine learning and ensembled classification strategy, open portals for data visualization and sharing, multi-temporal mapping of EULUC change, and implications in urban environmental studies, to facilitate multi-scale fine-resolution EULUC mapping research.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"27 1","pages":"410 - 441"},"PeriodicalIF":4.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1939243","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 29

Abstract

ABSTRACT Urban land use information that reflects socio-economic functions and human activities is critically essential for urban planning, landscape design, environmental management, health promotion, and biodiversity conservation. Land-use maps outlining the distribution, pattern, and composition of essential urban land use categories (EULUC) have facilitated a wide spectrum of applications and further triggered new opportunities in urban studies. New and improved Earth observations, algorithms, and advanced products for extracting thematic urban information, in association with emerging social sensing big data and auxiliary crowdsourcing datasets, all together offer great potentials to mapping fine-resolution EULUC from regional to global scales. Here we review the advances of EULUC mapping research and practices in terms of their data, methods, and applications. Based on the historical retrospect, we summarize the challenges and limitations of current EULUC studies regarding sample collection, mixed land use problem, data and model generalization, and large-scale mapping efforts. Finally, we propose and discuss future opportunities, including cross-scale mapping, optimal integration of multi-source features, global sample libraries from crowdsourcing approaches, advanced machine learning and ensembled classification strategy, open portals for data visualization and sharing, multi-temporal mapping of EULUC change, and implications in urban environmental studies, to facilitate multi-scale fine-resolution EULUC mapping research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用地理空间大数据绘制城市基本土地利用类别(EULUC):进展、挑战和机遇
反映社会经济功能和人类活动的城市土地利用信息对于城市规划、景观设计、环境管理、健康促进和生物多样性保护至关重要。土地利用地图概述了基本城市土地利用类别的分布、格局和组成,促进了广泛的应用,并进一步引发了城市研究的新机会。新的和改进的地球观测、算法和用于提取主题城市信息的先进产品,与新兴的社会传感大数据和辅助众包数据集相结合,共同为从区域到全球尺度的精细分辨率EULUC制图提供了巨大的潜力。本文从数据、方法和应用等方面综述了EULUC制图研究与实践的进展。在回顾历史的基础上,我们总结了当前EULUC研究在样本收集、混合土地利用问题、数据和模型推广以及大规模制图工作等方面的挑战和局限性。最后,我们提出并讨论了未来的机遇,包括跨尺度制图、多源特征的优化集成、来自众包方法的全球样本库、先进的机器学习和集成分类策略、数据可视化和共享的开放门户、EULUC变化的多时段制图以及对城市环境研究的启示,以促进多尺度精细分辨率EULUC制图研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1