Few-shot Semantic Segmentation with Support-induced Graph Convolutional Network

Jie Liu, Yanqi Bao, Wenzhe Yin, Haochen Wang, Yang Gao, J. Sonke, E. Gavves
{"title":"Few-shot Semantic Segmentation with Support-induced Graph Convolutional Network","authors":"Jie Liu, Yanqi Bao, Wenzhe Yin, Haochen Wang, Yang Gao, J. Sonke, E. Gavves","doi":"10.48550/arXiv.2301.03194","DOIUrl":null,"url":null,"abstract":"Few-shot semantic segmentation (FSS) aims to achieve novel objects segmentation with only a few annotated samples and has made great progress recently. Most of the existing FSS models focus on the feature matching between support and query to tackle FSS. However, the appearance variations between objects from the same category could be extremely large, leading to unreliable feature matching and query mask prediction. To this end, we propose a Support-induced Graph Convolutional Network (SiGCN) to explicitly excavate latent context structure in query images. Specifically, we propose a Support-induced Graph Reasoning (SiGR) module to capture salient query object parts at different semantic levels with a Support-induced GCN. Furthermore, an instance association (IA) module is designed to capture high-order instance context from both support and query instances. By integrating the proposed two modules, SiGCN can learn rich query context representation, and thus being more robust to appearance variations. Extensive experiments on PASCAL-5i and COCO-20i demonstrate that our SiGCN achieves state-of-the-art performance.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"40 1","pages":"126"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.03194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Few-shot semantic segmentation (FSS) aims to achieve novel objects segmentation with only a few annotated samples and has made great progress recently. Most of the existing FSS models focus on the feature matching between support and query to tackle FSS. However, the appearance variations between objects from the same category could be extremely large, leading to unreliable feature matching and query mask prediction. To this end, we propose a Support-induced Graph Convolutional Network (SiGCN) to explicitly excavate latent context structure in query images. Specifically, we propose a Support-induced Graph Reasoning (SiGR) module to capture salient query object parts at different semantic levels with a Support-induced GCN. Furthermore, an instance association (IA) module is designed to capture high-order instance context from both support and query instances. By integrating the proposed two modules, SiGCN can learn rich query context representation, and thus being more robust to appearance variations. Extensive experiments on PASCAL-5i and COCO-20i demonstrate that our SiGCN achieves state-of-the-art performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持诱导图卷积网络的少镜头语义分割
少镜头语义分割(few -shot semantic segmentation, FSS)旨在利用少量的标注样本实现新颖的目标分割,近年来取得了很大的进展。现有的FSS模型大多侧重于支持和查询之间的特征匹配来解决FSS问题。然而,来自同一类别的对象之间的外观差异可能非常大,导致不可靠的特征匹配和查询掩码预测。为此,我们提出了一种支持诱导图卷积网络(SiGCN)来明确挖掘查询图像中的潜在上下文结构。具体来说,我们提出了一个支持诱导图推理(SiGR)模块,通过支持诱导的GCN捕获不同语义级别的显著查询对象部分。此外,还设计了一个实例关联(IA)模块,用于从支持和查询实例中捕获高阶实例上下文。通过集成这两个模块,SiGCN可以学习丰富的查询上下文表示,从而对外观变化具有更强的鲁棒性。PASCAL-5i和COCO-20i上的大量实验表明,我们的SiGCN达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Anatomically Consistent Embedding for Chest Radiography. Single Pixel Spectral Color Constancy DiffSketching: Sketch Control Image Synthesis with Diffusion Models Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Mitigating Bias in Visual Transformers via Targeted Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1