Clustering algorithms application to forming a representative sample in the training of a multilayer perceptron

Aleksey A. Pastukhov, Aleksander A. Prokofiev
{"title":"Clustering algorithms application to forming a representative sample in the training of a multilayer perceptron","authors":"Aleksey A. Pastukhov,&nbsp;Aleksander A. Prokofiev","doi":"10.1016/j.spjpm.2017.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we have considered the problem of effectively forming the representative sample for training a neural network of the multilayer perceptron (MLP) type. An approach based on the use of clustering that allowed to increase the entropy of the training set was put forward. Various clustering algorithms were examined in order to form the representative sample. The algorithm-based clustering of factor spaces of various dimensions was carried out, and a representative sample was formed. To verify our approach we synthesized the MLP neural network and trained it. The training technique was performed with the sets formed both with and without clustering. A comparative analysis of the effectiveness of clustering algorithms was carried out in relation to the problem of representative sample formation.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.05.004","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722317300488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we have considered the problem of effectively forming the representative sample for training a neural network of the multilayer perceptron (MLP) type. An approach based on the use of clustering that allowed to increase the entropy of the training set was put forward. Various clustering algorithms were examined in order to form the representative sample. The algorithm-based clustering of factor spaces of various dimensions was carried out, and a representative sample was formed. To verify our approach we synthesized the MLP neural network and trained it. The training technique was performed with the sets formed both with and without clustering. A comparative analysis of the effectiveness of clustering algorithms was carried out in relation to the problem of representative sample formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚类算法在多层感知器训练中形成代表性样本的应用
本文研究了多层感知器(MLP)型神经网络的代表性样本的有效形成问题。提出了一种基于聚类的方法来增加训练集的熵。为了形成具有代表性的样本,对各种聚类算法进行了检验。基于算法对各维度因子空间进行聚类,形成具有代表性的样本。为了验证我们的方法,我们合成了MLP神经网络并对其进行了训练。对聚类和非聚类形成的集合进行训练。针对代表性样本形成问题,对聚类算法的有效性进行了对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
50.00%
发文量
0
期刊最新文献
A comparison of potential functions for molecular dynamic simulation of methane sorption in the silicalite CONTRIBUTION OF INTERNAL IONIZATION PROCESSES IN SEMICONDUCTORS TO RADIATIVE LOSSES OF RELATIVISTIC ELECTRONS A study of thermal regime in the high-power LED arrays Greenish blue luminescence in NaCd(1−x) SO4F: XEu2+ halosulphate phosphor for solid state lightening devices N = 28 isotones: Shape coexistence towards proton-deficient side
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1