Self‐Driven Multistep Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow

Kameel Abdel-latif, Robert W. Epps, Fazel Bateni, Suyong Han, Kristofer G. Reyes, M. Abolhasani
{"title":"Self‐Driven Multistep Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow","authors":"Kameel Abdel-latif, Robert W. Epps, Fazel Bateni, Suyong Han, Kristofer G. Reyes, M. Abolhasani","doi":"10.1002/aisy.202000245","DOIUrl":null,"url":null,"abstract":"Identifying the optimal formulation of emerging inorganic lead halide perovskite quantum dots (LHP QDs) with their vast colloidal synthesis universe and multiple synthesis/postsynthesis processing parameters is a challenging undertaking for material‐ and time‐intensive, batch synthesis strategies. Herein, a modular microfluidic synthesis strategy, integrated with an artificial intelligence (AI)‐guided decision‐making agent for intelligent navigation through the complex colloidal synthesis universe of LHP QDs with 10 individually controlled synthesis parameters and an accessible parameter space exceeding 2 × 107, is introduced. Utilizing the developed autonomous microfluidic experimentation strategy within a global learning framework, the optimal formulation of LHP QDs is rapidly identified through a two‐step colloidal synthesis and postsynthesis halide exchange reaction, for 10 different emission colors in less than 40 min per desired peak emission energy. Using two in‐series microfluidic reactors enables continuous bandgap engineering of LHP QDs via in‐line halide exchange reactions without the need for an intermediate washing step. Using an inert gas within a three‐phase flow format enables successful, self‐synchronized continuous delivery of halide salt precursor into moving droplets containing LHP QDs, resulting in accelerated closed‐loop formulation optimization and end‐to‐end continuous manufacturing of LHP QDs with desired optoelectronic properties.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Identifying the optimal formulation of emerging inorganic lead halide perovskite quantum dots (LHP QDs) with their vast colloidal synthesis universe and multiple synthesis/postsynthesis processing parameters is a challenging undertaking for material‐ and time‐intensive, batch synthesis strategies. Herein, a modular microfluidic synthesis strategy, integrated with an artificial intelligence (AI)‐guided decision‐making agent for intelligent navigation through the complex colloidal synthesis universe of LHP QDs with 10 individually controlled synthesis parameters and an accessible parameter space exceeding 2 × 107, is introduced. Utilizing the developed autonomous microfluidic experimentation strategy within a global learning framework, the optimal formulation of LHP QDs is rapidly identified through a two‐step colloidal synthesis and postsynthesis halide exchange reaction, for 10 different emission colors in less than 40 min per desired peak emission energy. Using two in‐series microfluidic reactors enables continuous bandgap engineering of LHP QDs via in‐line halide exchange reactions without the need for an intermediate washing step. Using an inert gas within a three‐phase flow format enables successful, self‐synchronized continuous delivery of halide salt precursor into moving droplets containing LHP QDs, resulting in accelerated closed‐loop formulation optimization and end‐to‐end continuous manufacturing of LHP QDs with desired optoelectronic properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自驱动多步量子点合成在流动中的自主机器人实验实现
新兴的无机卤化铅钙钛矿量子点(LHP QDs)具有广阔的胶体合成宇宙和多种合成/合成后处理参数,确定其最佳配方对于材料和时间密集型的批量合成策略来说是一项具有挑战性的任务。本文介绍了一种模块化微流控合成策略,结合人工智能(AI)引导的决策代理,用于在LHP量子点复杂的胶体合成宇宙中进行智能导航,该宇宙具有10个单独控制的合成参数,可访问参数空间超过2 × 107。利用在全局学习框架内开发的自主微流控实验策略,通过两步胶体合成和合成后卤化物交换反应快速确定了LHP量子点的最佳配方,每个所需峰值发射能量在不到40分钟内产生10种不同的发射颜色。使用两个串联的微流控反应器可以通过在线卤化物交换反应实现LHP量子点的连续带隙工程,而无需中间洗涤步骤。在三相流格式中使用惰性气体,可以成功地、自同步地将卤化物盐前驱体连续输送到含有LHP量子点的移动液滴中,从而加速闭环配方优化和端到端连续制造具有所需光电性能的LHP量子点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1