Nicholas Moses, E. Ismayilov, Edwin Newn, Emmanuel Mogga, Chunlei Zou, Jeremie Poizat, Gordon Milne, I. Sanni, Stewart Thomson, Blayne Haubrich
{"title":"Single Trip Sand Control and Cementing System","authors":"Nicholas Moses, E. Ismayilov, Edwin Newn, Emmanuel Mogga, Chunlei Zou, Jeremie Poizat, Gordon Milne, I. Sanni, Stewart Thomson, Blayne Haubrich","doi":"10.4043/31431-ms","DOIUrl":null,"url":null,"abstract":"\n The operator of field S initiated a project with a key objective to unlock and increase oil recovery while maximizing the economical oil ultimate recovery and maintaining a daily production with a ceiling unit development cost. The targeted sandstone reservoirs are shallow with unconsolidated formation which require active sand control. To achieve the objectives, a Single Trip Sand Control and Cementing System was developed by the service provider utilizing existing proven technology which was adapted to be a fit for purpose solution. The main driver in developing the single trip system was operational simplicity. The high-level procedure of the system is:\n Drill open hole from surface to target depth in a single run. Make up lower completion assembly and production casing and run to target depth. In the same trip, set production packer and release service string. Gravel pack the lower completion or install as a stand-alone screens completion and cement the production casing in place before pulling out of hole.\n Once the single trip system was designed and developed, a detailed system integration testing was carried out to ensure that the technology performed as expected. The turnaround time from design to execution was reduced tremendously by utilizing existing proven technology with minimal modification required. From there, 2 wells were identified for a pilot technology trial where this novel system was implemented. The execution of these 2 wells was successful with the expected learning curve of implementing a new system. One of the key findings were the robustness of the system as it was applied in a well with higher than normal doglegs, highly deviated shallow reservoir and the sand screens were run through extended open hole shale sections which would have been cased off in a conventional completion approach. Additionally, the single trip approach allows for further optimization with multi-skilling personnel, and this led to an improved operational efficiency. Post well completion, the 2 wells have been successfully put on production and are producing sand free. This unconventional approach can unlock more marginal reserves that were previously not feasible to be developed economically.","PeriodicalId":11011,"journal":{"name":"Day 3 Thu, March 24, 2022","volume":"225 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31431-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The operator of field S initiated a project with a key objective to unlock and increase oil recovery while maximizing the economical oil ultimate recovery and maintaining a daily production with a ceiling unit development cost. The targeted sandstone reservoirs are shallow with unconsolidated formation which require active sand control. To achieve the objectives, a Single Trip Sand Control and Cementing System was developed by the service provider utilizing existing proven technology which was adapted to be a fit for purpose solution. The main driver in developing the single trip system was operational simplicity. The high-level procedure of the system is:
Drill open hole from surface to target depth in a single run. Make up lower completion assembly and production casing and run to target depth. In the same trip, set production packer and release service string. Gravel pack the lower completion or install as a stand-alone screens completion and cement the production casing in place before pulling out of hole.
Once the single trip system was designed and developed, a detailed system integration testing was carried out to ensure that the technology performed as expected. The turnaround time from design to execution was reduced tremendously by utilizing existing proven technology with minimal modification required. From there, 2 wells were identified for a pilot technology trial where this novel system was implemented. The execution of these 2 wells was successful with the expected learning curve of implementing a new system. One of the key findings were the robustness of the system as it was applied in a well with higher than normal doglegs, highly deviated shallow reservoir and the sand screens were run through extended open hole shale sections which would have been cased off in a conventional completion approach. Additionally, the single trip approach allows for further optimization with multi-skilling personnel, and this led to an improved operational efficiency. Post well completion, the 2 wells have been successfully put on production and are producing sand free. This unconventional approach can unlock more marginal reserves that were previously not feasible to be developed economically.