{"title":"Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link","authors":"Donatien Hainaut, J. Trufin, M. Denuit","doi":"10.1080/03461238.2022.2037016","DOIUrl":null,"url":null,"abstract":"Thanks to its outstanding performances, boosting has rapidly gained wide acceptance among actuaries. To speed up calculations, boosting is often applied to gradients of the loss function, not to responses (hence the name gradient boosting). When the model is trained by minimizing Poisson deviance, this amounts to apply the least-squares principle to raw residuals. This exposes gradient boosting to the same problems that lead to replace least-squares with Poisson Generalized Linear Models (GLM) to analyze low counts (typically, the number of reported claims at policy level in personal lines). This paper shows that boosting can be conducted directly on the response under Tweedie loss function and log-link, by adapting the weights at each step. Numerical illustrations demonstrate similar or better performances compared to gradient boosting when trees are used as weak learners, with a higher level of transparency since responses are used instead of gradients.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2022.2037016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Thanks to its outstanding performances, boosting has rapidly gained wide acceptance among actuaries. To speed up calculations, boosting is often applied to gradients of the loss function, not to responses (hence the name gradient boosting). When the model is trained by minimizing Poisson deviance, this amounts to apply the least-squares principle to raw residuals. This exposes gradient boosting to the same problems that lead to replace least-squares with Poisson Generalized Linear Models (GLM) to analyze low counts (typically, the number of reported claims at policy level in personal lines). This paper shows that boosting can be conducted directly on the response under Tweedie loss function and log-link, by adapting the weights at each step. Numerical illustrations demonstrate similar or better performances compared to gradient boosting when trees are used as weak learners, with a higher level of transparency since responses are used instead of gradients.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.