{"title":"Response versus gradient boosting trees, GLMs and neural networks under Tweedie loss and log-link","authors":"Donatien Hainaut, J. Trufin, M. Denuit","doi":"10.1080/03461238.2022.2037016","DOIUrl":null,"url":null,"abstract":"Thanks to its outstanding performances, boosting has rapidly gained wide acceptance among actuaries. To speed up calculations, boosting is often applied to gradients of the loss function, not to responses (hence the name gradient boosting). When the model is trained by minimizing Poisson deviance, this amounts to apply the least-squares principle to raw residuals. This exposes gradient boosting to the same problems that lead to replace least-squares with Poisson Generalized Linear Models (GLM) to analyze low counts (typically, the number of reported claims at policy level in personal lines). This paper shows that boosting can be conducted directly on the response under Tweedie loss function and log-link, by adapting the weights at each step. Numerical illustrations demonstrate similar or better performances compared to gradient boosting when trees are used as weak learners, with a higher level of transparency since responses are used instead of gradients.","PeriodicalId":49572,"journal":{"name":"Scandinavian Actuarial Journal","volume":"18 1","pages":"841 - 866"},"PeriodicalIF":1.6000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Actuarial Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2022.2037016","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5
Abstract
Thanks to its outstanding performances, boosting has rapidly gained wide acceptance among actuaries. To speed up calculations, boosting is often applied to gradients of the loss function, not to responses (hence the name gradient boosting). When the model is trained by minimizing Poisson deviance, this amounts to apply the least-squares principle to raw residuals. This exposes gradient boosting to the same problems that lead to replace least-squares with Poisson Generalized Linear Models (GLM) to analyze low counts (typically, the number of reported claims at policy level in personal lines). This paper shows that boosting can be conducted directly on the response under Tweedie loss function and log-link, by adapting the weights at each step. Numerical illustrations demonstrate similar or better performances compared to gradient boosting when trees are used as weak learners, with a higher level of transparency since responses are used instead of gradients.
期刊介绍:
Scandinavian Actuarial Journal is a journal for actuarial sciences that deals, in theory and application, with mathematical methods for insurance and related matters.
The bounds of actuarial mathematics are determined by the area of application rather than by uniformity of methods and techniques. Therefore, a paper of interest to Scandinavian Actuarial Journal may have its theoretical basis in probability theory, statistics, operations research, numerical analysis, computer science, demography, mathematical economics, or any other area of applied mathematics; the main criterion is that the paper should be of specific relevance to actuarial applications.