Adaptive Feature Selection Using an Autoencoder and Classifier: Applied to a Radiomics Case

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577861
R. Hassanpour, Niels Netten, Tony Busker, Mortaza Shoae Bargh, Sunil Choenni
{"title":"Adaptive Feature Selection Using an Autoencoder and Classifier: Applied to a Radiomics Case","authors":"R. Hassanpour, Niels Netten, Tony Busker, Mortaza Shoae Bargh, Sunil Choenni","doi":"10.1145/3555776.3577861","DOIUrl":null,"url":null,"abstract":"Machine learning models have been an inevitable tool for analyzing medical images by radiologists. These models provide important information about the contents of these images using extracted radiomic features. However, the dimensionality of the feature space can cause reduction in the accuracy of prediction, a phenomenon known as the curse of dimensionality. In this study we propose a feature selection method using an autoencoder, which incorporates the performance of a classifier within the feature selection process. This is achieved by automatically adjusting a threshold value used for selecting the features fed to the classifier. The contribution of this study is twofold. The first contribution is an improvement to group lasso to include the group size as a cost parameter of the autoencoder. The second contribution is to automate the selection of the threshold value used for eliminating redundant input features. The threshold value in our proposed method is learned during training phase of the proposed model. Our experimental results indicates that the proposed model can successfully converge to appropriate feature selection parameters.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning models have been an inevitable tool for analyzing medical images by radiologists. These models provide important information about the contents of these images using extracted radiomic features. However, the dimensionality of the feature space can cause reduction in the accuracy of prediction, a phenomenon known as the curse of dimensionality. In this study we propose a feature selection method using an autoencoder, which incorporates the performance of a classifier within the feature selection process. This is achieved by automatically adjusting a threshold value used for selecting the features fed to the classifier. The contribution of this study is twofold. The first contribution is an improvement to group lasso to include the group size as a cost parameter of the autoencoder. The second contribution is to automate the selection of the threshold value used for eliminating redundant input features. The threshold value in our proposed method is learned during training phase of the proposed model. Our experimental results indicates that the proposed model can successfully converge to appropriate feature selection parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自编码器和分类器的自适应特征选择:应用于放射组学案例
机器学习模型已经成为放射科医生分析医学图像的不可避免的工具。这些模型使用提取的放射学特征提供关于这些图像内容的重要信息。然而,特征空间的维数会导致预测精度的降低,这种现象被称为维数诅咒。在这项研究中,我们提出了一种使用自编码器的特征选择方法,该方法在特征选择过程中结合了分类器的性能。这是通过自动调整用于选择提供给分类器的特征的阈值来实现的。这项研究的贡献是双重的。第一个贡献是改进了组套索,将组大小作为自编码器的成本参数。第二个贡献是自动选择用于消除冗余输入特征的阈值。我们提出的方法的阈值是在模型的训练阶段学习的。实验结果表明,该模型能够成功收敛到合适的特征选择参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1