Design and simulation of the all-optical XOR logic gate by XPM mechanism using photonic crystal semiconductor optical amplifier based on mach–zehnder interferometer

IF 2.9 4区 物理与天体物理 Q2 OPTICS Journal of Nonlinear Optical Physics & Materials Pub Date : 2022-01-28 DOI:10.1142/s0218863522500138
Khosro Heydarian, A. Nosratpour, M. Razaghi
{"title":"Design and simulation of the all-optical XOR logic gate by XPM mechanism using photonic crystal semiconductor optical amplifier based on mach–zehnder interferometer","authors":"Khosro Heydarian, A. Nosratpour, M. Razaghi","doi":"10.1142/s0218863522500138","DOIUrl":null,"url":null,"abstract":"In the presented structure, the performance of the all-optical XOR logic gate (AO-XOR-LG) is investigated. The XOR-LG is designed and simulated using a photonic crystal semiconductor optical amplifier (PC-SOA) based on Mach–Zehnder interferometer (MZI) and cross-phase modulation (XPM) nonlinear mechanism. The input optical pulse train used in this simulation is the type of RZ (Return-to-Zero). The finite difference method (FDM) has been used to solve the rate and propagation equations. The effect of input signal energy, bias current, and group refractive index on the output signal and gain of the XOR-LG is studied. The optimal mode is obtained for the XOR-LG with a bit rate of 80 Gbps. Furthermore, for the first time, the effects of quality factor (QF), conversion efficiency (CE), extinction ratio (ER), pattern effect (PE), and gain recovery are simultaneously analyzed in the simulation to increase PC-SOA performance. According to the results, PC-SOA has a more reasonable logic performance than conventional SOA, and due to its much shorter length than SOA, it can be a much better choice for integrated optical circuits.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"33 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218863522500138","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

Abstract

In the presented structure, the performance of the all-optical XOR logic gate (AO-XOR-LG) is investigated. The XOR-LG is designed and simulated using a photonic crystal semiconductor optical amplifier (PC-SOA) based on Mach–Zehnder interferometer (MZI) and cross-phase modulation (XPM) nonlinear mechanism. The input optical pulse train used in this simulation is the type of RZ (Return-to-Zero). The finite difference method (FDM) has been used to solve the rate and propagation equations. The effect of input signal energy, bias current, and group refractive index on the output signal and gain of the XOR-LG is studied. The optimal mode is obtained for the XOR-LG with a bit rate of 80 Gbps. Furthermore, for the first time, the effects of quality factor (QF), conversion efficiency (CE), extinction ratio (ER), pattern effect (PE), and gain recovery are simultaneously analyzed in the simulation to increase PC-SOA performance. According to the results, PC-SOA has a more reasonable logic performance than conventional SOA, and due to its much shorter length than SOA, it can be a much better choice for integrated optical circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于马赫曾德干涉仪的光子晶体半导体光放大器,设计并仿真了基于XPM机制的全光异或逻辑门
在该结构中,研究了全光异或逻辑门(AO-XOR-LG)的性能。采用基于Mach-Zehnder干涉仪(MZI)和交叉相位调制(XPM)非线性机制的光子晶体半导体光放大器(PC-SOA)设计和仿真了XOR-LG。在这个模拟中使用的输入光脉冲序列是RZ(归零)的类型。用有限差分法求解了速率方程和传播方程。研究了输入信号能量、偏置电流和群折射率对XOR-LG输出信号和增益的影响。得到了比特率为80gbps的XOR-LG的最优模式。此外,首次在仿真中同时分析了质量因子(QF)、转换效率(CE)、消光比(ER)、模式效应(PE)和增益恢复对PC-SOA性能的影响。结果表明,PC-SOA具有比传统SOA更合理的逻辑性能,并且由于其长度比SOA短得多,可以成为集成光电路的更好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
期刊最新文献
Dominance of polarization modes and absorption on self-focusing of laser beams in collisionless magnetized plasma Influence of the focusing parameter on the SHG efficiency at a wavelength of 968 nm in a ZnSe polycrystal Linear and nonlinear electric and magneto-optical absorption coefficients and relative refractive index changes in WxMo1-xS2 Monolayer: Role of Tungsten contents Optical properties of silver-doped ZnS nanostructures W-chirped solitons and modulated waves patterns in parabolic law medium with anti-cubic nonlinearity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1