ARCHETYPAL ANALYSIS: AN ALTERNATIVE TO CLUSTERING FOR UNSUPERVISED TEXTURE SEGMENTATION

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Image Analysis & Stereology Pub Date : 2019-07-18 DOI:10.5566/IAS.2052
Ismael Cabero, I. Epifanio
{"title":"ARCHETYPAL ANALYSIS: AN ALTERNATIVE TO CLUSTERING FOR UNSUPERVISED TEXTURE SEGMENTATION","authors":"Ismael Cabero, I. Epifanio","doi":"10.5566/IAS.2052","DOIUrl":null,"url":null,"abstract":"Texture segmentation is one of the main tasks in image applications, specifically in remote sensing, where the objective is to segment high-resolution images of natural landscapes into different cover types. Often the focus is on the selection of discriminant textural features, and although these are really fundamental, there is another part of the process that is also influential, partitioning different homogeneous textures into groups. A methodology based on archetype analysis (AA) of the local textural measurements is proposed. AA seeks the purest textures in the image and it can find the borders between pure textures, as those regions composed of mixtures of several archetypes. The proposed procedure has been tested on a remote sensing image application with local granulometries, providing promising results.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"146 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2052","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 9

Abstract

Texture segmentation is one of the main tasks in image applications, specifically in remote sensing, where the objective is to segment high-resolution images of natural landscapes into different cover types. Often the focus is on the selection of discriminant textural features, and although these are really fundamental, there is another part of the process that is also influential, partitioning different homogeneous textures into groups. A methodology based on archetype analysis (AA) of the local textural measurements is proposed. AA seeks the purest textures in the image and it can find the borders between pure textures, as those regions composed of mixtures of several archetypes. The proposed procedure has been tested on a remote sensing image application with local granulometries, providing promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原型分析:一种替代聚类的无监督纹理分割
纹理分割是图像应用的主要任务之一,特别是在遥感领域,其目标是将高分辨率的自然景观图像分割成不同的覆盖类型。通常,重点是选择有区别的纹理特征,尽管这些特征是最基本的,但这个过程的另一部分也很有影响力,那就是将不同的同质纹理划分成不同的组。提出了一种基于原型分析的局部纹理测量方法。AA在图像中寻找最纯粹的纹理,它可以找到纯粹纹理之间的边界,因为这些区域由几个原型的混合物组成。该方法已在具有局部粒度测量的遥感图像应用中进行了测试,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
期刊最新文献
PU-NET DEEP LEARNING ARCHITECTURE FOR GLIOMAS BRAIN TUMOUR SEGMENTATION IN MAGNETIC RESONANCE IMAGES Sample-balanced and IoU-guided anchor-free visual tracking Existence and approximation of densities of chord length- and cross section area distributions IMPROVEMENT PROCEDURE FOR IMAGE SEGMENTATION OF FRUITS AND VEGETABLES BASED ON THE OTSU METHOD. A Completed Multiply Threshold Encoding Pattern for Texture Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1