{"title":"Policy auditing over incomplete logs: theory, implementation and applications","authors":"D. Garg, Limin Jia, Anupam Datta","doi":"10.1145/2046707.2046726","DOIUrl":null,"url":null,"abstract":"We present the design, implementation and evaluation of an algorithm that checks audit logs for compliance with privacy and security policies. The algorithm, which we name reduce, addresses two fundamental challenges in compliance checking that arise in practice. First, in order to be applicable to realistic policies, reduce operates on policies expressed in a first-order logic that allows restricted quantification over infinite domains. We build on ideas from logic programming to identify the restricted form of quantified formulas. The logic can, in particular, express all 84 disclosure-related clauses of the HIPAA Privacy Rule, which involve quantification over the infinite set of messages containing personal information. Second, since audit logs are inherently incomplete (they may not contain sufficient information to determine whether a policy is violated or not), reduce proceeds iteratively: in each iteration, it provably checks as much of the policy as possible over the current log and outputs a residual policy that can only be checked when the log is extended with additional information. We prove correctness, termination, time and space complexity results for reduce. We implement reduce and optimize the base implementation using two heuristics for database indexing that are guided by the syntactic structure of policies. The implementation is used to check simulated audit logs for compliance with the HIPAA Privacy Rule. Our experimental results demonstrate that the algorithm is fast enough to be used in practice.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2046726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

Abstract

We present the design, implementation and evaluation of an algorithm that checks audit logs for compliance with privacy and security policies. The algorithm, which we name reduce, addresses two fundamental challenges in compliance checking that arise in practice. First, in order to be applicable to realistic policies, reduce operates on policies expressed in a first-order logic that allows restricted quantification over infinite domains. We build on ideas from logic programming to identify the restricted form of quantified formulas. The logic can, in particular, express all 84 disclosure-related clauses of the HIPAA Privacy Rule, which involve quantification over the infinite set of messages containing personal information. Second, since audit logs are inherently incomplete (they may not contain sufficient information to determine whether a policy is violated or not), reduce proceeds iteratively: in each iteration, it provably checks as much of the policy as possible over the current log and outputs a residual policy that can only be checked when the log is extended with additional information. We prove correctness, termination, time and space complexity results for reduce. We implement reduce and optimize the base implementation using two heuristics for database indexing that are guided by the syntactic structure of policies. The implementation is used to check simulated audit logs for compliance with the HIPAA Privacy Rule. Our experimental results demonstrate that the algorithm is fast enough to be used in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对不完整日志的策略审计:理论、实现和应用
我们介绍了一种算法的设计、实现和评估,该算法检查审计日志是否符合隐私和安全策略。我们将这种算法命名为reduce,它解决了在实践中出现的合规性检查中的两个基本挑战。首先,为了适用于实际的策略,reduce对以一阶逻辑表示的策略进行操作,该逻辑允许在无限域上进行有限的量化。我们以逻辑规划的思想为基础来识别量化公式的限制形式。特别是,该逻辑可以表达HIPAA隐私规则中所有84条与披露相关的条款,这些条款涉及对包含个人信息的无限消息集进行量化。其次,由于审计日志本质上是不完整的(它们可能不包含足够的信息来确定策略是否被违反),因此迭代地减少进度:在每次迭代中,它可以在当前日志中检查尽可能多的策略,并输出一个剩余的策略,只有当日志扩展到附加信息时才能检查该策略。我们证明了正确性、终止性、时间和空间复杂度的结果。我们使用由策略的语法结构引导的两种数据库索引启发式方法来实现reduce和优化基本实现。该实现用于检查模拟审计日志是否符合HIPAA隐私规则。实验结果表明,该算法速度快,可用于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021 WAHC '21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021 Incremental Learning Algorithm of Data Complexity Based on KNN Classifier How to Accurately and Privately Identify Anomalies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1