Performance quantification of latest generation Li-ion batteries in wide temperature range

Y. Zhang, O. Briat, J. Delétage, C. Martin, Guillaume Gager, J. Vinassa
{"title":"Performance quantification of latest generation Li-ion batteries in wide temperature range","authors":"Y. Zhang, O. Briat, J. Delétage, C. Martin, Guillaume Gager, J. Vinassa","doi":"10.1109/IECON.2017.8217343","DOIUrl":null,"url":null,"abstract":"In addition to electric vehicles and stationary applications, Li-ion cells are now used in power systems of more electric aircrafts thanks to their high energy and high power density. Nevertheless, the available performance of Li-ion cells is limited at low temperature. This work is focused on the capacity and discharge resistance to evaluate the performance of last generation Li-ion technologies covering the range of aeronautic temperature (−20°C to 55°C). A dedicated method is proposed to determine the Open Circuit Voltage (OCV) and the discharge resistance at several States of Charge (SOC) and different temperatures. The self-heating is investigated during the continuous discharge which depends on internal resistance and heat transfer coefficient in climatic chamber. In addition, a quasi-static isothermal electrical model is carried out to rebuild the curve of continuous discharge for one technology by using the OCV and the discharge resistance at −20°C and 55°C. Finally, the difference between simulation and experiments is discussed and attributed to SOC quantification method with regard to discharge resistance measurement.","PeriodicalId":13098,"journal":{"name":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","volume":"25 1","pages":"7666-7671"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2017.8217343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In addition to electric vehicles and stationary applications, Li-ion cells are now used in power systems of more electric aircrafts thanks to their high energy and high power density. Nevertheless, the available performance of Li-ion cells is limited at low temperature. This work is focused on the capacity and discharge resistance to evaluate the performance of last generation Li-ion technologies covering the range of aeronautic temperature (−20°C to 55°C). A dedicated method is proposed to determine the Open Circuit Voltage (OCV) and the discharge resistance at several States of Charge (SOC) and different temperatures. The self-heating is investigated during the continuous discharge which depends on internal resistance and heat transfer coefficient in climatic chamber. In addition, a quasi-static isothermal electrical model is carried out to rebuild the curve of continuous discharge for one technology by using the OCV and the discharge resistance at −20°C and 55°C. Finally, the difference between simulation and experiments is discussed and attributed to SOC quantification method with regard to discharge resistance measurement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最新一代宽温度范围锂离子电池性能量化
除了电动汽车和固定应用,锂离子电池由于其高能量和高功率密度,现在被用于更多电动飞机的动力系统。然而,锂离子电池在低温下的可用性能是有限的。这项工作的重点是评估上一代锂离子技术在航空温度范围内(- 20°C至55°C)的容量和放电阻力。提出了一种在不同温度和不同充电状态下确定开路电压(OCV)和放电电阻的专用方法。研究了连续放电过程中的自热问题,该问题取决于恒温室内的内阻和换热系数。此外,建立了准静态等温电学模型,利用OCV和- 20°C和55°C下的放电电阻重建了一种工艺的连续放电曲线。最后,讨论了模拟与实验的差异,并将其归因于荷电状态下放电电阻测量的量化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the influence of train operation diagram adjustment on the working state and life of IGBT module of traction converter Real-time pothole detection system on vehicle using improved YOLOv5 in Malaysia an Interval Multiple Models Approach for Uncertain Nonlinear Systems Estimation Enhancement of DC MCB Performance using Power Semiconductor Devices Blended Learning for Remote Software Simulation Laboratory of a Solar Power System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1