Acute mesenteric ischemia/reperfusion down regulates renal PGE2 synthesis.

IF 2.9 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Prostaglandins, leukotrienes, and essential fatty acids Pub Date : 1994-01-01 DOI:10.1097/00024382-199401001-00178
S. Myers, R. Hernandez, J. Horton
{"title":"Acute mesenteric ischemia/reperfusion down regulates renal PGE2 synthesis.","authors":"S. Myers, R. Hernandez, J. Horton","doi":"10.1097/00024382-199401001-00178","DOIUrl":null,"url":null,"abstract":"This study examines the hypothesis that pentoxifylline protects renal PGE2 synthesis during mesenteric ischemia/reperfusion injury. Anesthetized Sprague-Dawley rats (300 g) were subjected to sham or superior mesenteric artery occlusion for 20 min followed by 30 min of reperfusion. The ischemia/reperfusion groups received either enteral allopurinol (10 mg/kg) daily for 5 d prior to ischemia, pentoxifylline (50 mg/kg) 10 min prior to ischemia or carrier. The kidney was removed and perfused in vitro with oxygenated Krebs buffer and the effluent was assayed for release of 6-keto-PGF1 alpha, PGE2 and thromboxane B2 (TXB2) by enzyme immunoassay. Mesenteric ischemia/reperfusion decreased renal PGE2 release by 50% (compared to sham) but did not alter release of TXB2 or 6-keto-PGF1 alpha. Pentoxifylline pretreatment (not allopurinol) preserved renal PGE2 release at the sham level. These data showed pentoxifylline exerted a protective effect against severe mesenteric ischemia/reperfusion injury by maintaining release of renal PGE2, a potent endogenous renal vasodilator.","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"7 1","pages":"41-8"},"PeriodicalIF":2.9000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/00024382-199401001-00178","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the hypothesis that pentoxifylline protects renal PGE2 synthesis during mesenteric ischemia/reperfusion injury. Anesthetized Sprague-Dawley rats (300 g) were subjected to sham or superior mesenteric artery occlusion for 20 min followed by 30 min of reperfusion. The ischemia/reperfusion groups received either enteral allopurinol (10 mg/kg) daily for 5 d prior to ischemia, pentoxifylline (50 mg/kg) 10 min prior to ischemia or carrier. The kidney was removed and perfused in vitro with oxygenated Krebs buffer and the effluent was assayed for release of 6-keto-PGF1 alpha, PGE2 and thromboxane B2 (TXB2) by enzyme immunoassay. Mesenteric ischemia/reperfusion decreased renal PGE2 release by 50% (compared to sham) but did not alter release of TXB2 or 6-keto-PGF1 alpha. Pentoxifylline pretreatment (not allopurinol) preserved renal PGE2 release at the sham level. These data showed pentoxifylline exerted a protective effect against severe mesenteric ischemia/reperfusion injury by maintaining release of renal PGE2, a potent endogenous renal vasodilator.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
急性肠系膜缺血/再灌注下调肾PGE2合成。
本研究探讨了己酮茶碱在肠系膜缺血/再灌注损伤中保护肾脏PGE2合成的假设。麻醉后的Sprague-Dawley大鼠(300 g)假手术或肠系膜上动脉阻断20 min,再灌注30 min。缺血/再灌注组在缺血前5天每天给予别嘌呤醇(10 mg/kg),缺血前10分钟给予己酮茶碱(50 mg/kg)或载体。取肾,体外充氧Krebs缓冲液灌注,用酶免疫法测定排出液中6-酮- pgf1 α、PGE2和血栓素B2 (TXB2)的释放。肠系膜缺血/再灌注使肾脏PGE2释放减少50%(与假手术相比),但不改变TXB2或6-酮- pgf1 α的释放。己酮茶碱预处理(而不是别嘌呤醇)在假手术水平上保留了肾脏PGE2的释放。这些数据表明,己酮茶碱通过维持肾PGE2(一种有效的内源性肾血管扩张剂)的释放,对严重的肠系膜缺血/再灌注损伤具有保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
6.70%
发文量
60
审稿时长
13.2 weeks
期刊介绍: The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.
期刊最新文献
Expression of concern: “Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats” Lower Omega-3 Status Associated with Higher Erythrocyte Distribution Width and Neutrophil-Lymphocyte Ratio in UK Biobank Cohort Effects of long-chain omega-3 polyunsaturated fatty acids on reducing anxiety and/or depression in adults; A systematic review and meta-analysis of randomised controlled trials Influence of the nutritional status and oxidative stress in the desaturation and elongation of n-3 and n-6 polyunsaturated fatty acids: Impact on non-alcoholic fatty liver disease. Differential Effects of Omega-3 Fatty Acids on HO-1, VCAM-1, and Cytotoxicity in Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1