{"title":"Ternary adsorption kinetics of gases in activated carbon","authors":"Xijun Hu, Bradley King, Duong D. Do","doi":"10.1016/0950-4214(94)80028-6","DOIUrl":null,"url":null,"abstract":"<div><p>Ternary adsorption kinetic experiments of ethane (light species), propane (intermediate species) and n-butane in activated carbon are collected under various concentration combinations, temperatures and particle sizes. The effects of these parameters on the ternary adsorption dynamics are investigated. All the experimental data are compared with the predictions by a multicomponent heterogeneous macropore, surface and micropore diffusion (HMSMD) model recently proposed by Hu and Do (<em>AIChE J</em> (1993) <strong>39</strong> 1628) using only single-component equilibrium and mass transfer parameters. The model can accurately predict the adsorption rates of ethane, propane and n-butane, but a small error in the calculation of the adsorbed amount of propane at ternary equilibrium is observed.</p></div>","PeriodicalId":12586,"journal":{"name":"Gas Separation & Purification","volume":"8 3","pages":"Pages 175-186"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0950-4214(94)80028-6","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Separation & Purification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0950421494800286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Ternary adsorption kinetic experiments of ethane (light species), propane (intermediate species) and n-butane in activated carbon are collected under various concentration combinations, temperatures and particle sizes. The effects of these parameters on the ternary adsorption dynamics are investigated. All the experimental data are compared with the predictions by a multicomponent heterogeneous macropore, surface and micropore diffusion (HMSMD) model recently proposed by Hu and Do (AIChE J (1993) 39 1628) using only single-component equilibrium and mass transfer parameters. The model can accurately predict the adsorption rates of ethane, propane and n-butane, but a small error in the calculation of the adsorbed amount of propane at ternary equilibrium is observed.