Diameter, Eccentricities and Distance Oracle Computations on H-Minor Free Graphs and Graphs of Bounded (Distance) Vapnik-Chervonenkis Dimension

G. Ducoffe, M. Habib, L. Viennot
{"title":"Diameter, Eccentricities and Distance Oracle Computations on H-Minor Free Graphs and Graphs of Bounded (Distance) Vapnik-Chervonenkis Dimension","authors":"G. Ducoffe, M. Habib, L. Viennot","doi":"10.1137/20m136551x","DOIUrl":null,"url":null,"abstract":"9 Under the Strong Exponential-Time Hypothesis, the diameter of general unweighted graphs 10 cannot be computed in truly subquadratic time (in the size n + m of the input), as shown 11 by Roditty and Williams. Nevertheless there are several graph classes for which this can be 12 done such as bounded-treewidth graphs, interval graphs and planar graphs, to name a few. We 13 propose to study unweighted graphs of constant distance VC-dimension as a broad generalization 14 of many such classes – where the distance VC-dimension of a graph G is defined as the VC-15 dimension of its ball hypergraph: whose hyperedges are the balls of all possible radii and centers 16 in G . In particular for any fixed H , the class of H -minor free graphs has distance VC-dimension 17 at most | V ( H ) | − 1. 18 • Our first main result is a Monte Carlo algorithm that on graphs of distance VC-dimension 19 at most d , for any fixed k , either computes the diameter or concludes that it is larger than 20 k in time ˜ O ( k · mn 1 − ε d ), where ε d ∈ (0; 1) only depends on d 1 . We thus obtain a truly 21 subquadratic-time parameterized algorithm for computing the diameter on such graphs. 22 • Then as a byproduct of our approach, we get a truly subquadratic-time randomized algo-23 rithm for constant diameter computation on all the nowhere dense graph classes. The latter 24 classes include all proper minor-closed graph classes, bounded-degree graphs and graphs of 25 bounded expansion. Before our work, the only known such algorithm was resulting from 26 an application of Courcelle’s theorem, see Grohe et al. [47]. 27","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":"20 1","pages":"1506-1534"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m136551x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

9 Under the Strong Exponential-Time Hypothesis, the diameter of general unweighted graphs 10 cannot be computed in truly subquadratic time (in the size n + m of the input), as shown 11 by Roditty and Williams. Nevertheless there are several graph classes for which this can be 12 done such as bounded-treewidth graphs, interval graphs and planar graphs, to name a few. We 13 propose to study unweighted graphs of constant distance VC-dimension as a broad generalization 14 of many such classes – where the distance VC-dimension of a graph G is defined as the VC-15 dimension of its ball hypergraph: whose hyperedges are the balls of all possible radii and centers 16 in G . In particular for any fixed H , the class of H -minor free graphs has distance VC-dimension 17 at most | V ( H ) | − 1. 18 • Our first main result is a Monte Carlo algorithm that on graphs of distance VC-dimension 19 at most d , for any fixed k , either computes the diameter or concludes that it is larger than 20 k in time ˜ O ( k · mn 1 − ε d ), where ε d ∈ (0; 1) only depends on d 1 . We thus obtain a truly 21 subquadratic-time parameterized algorithm for computing the diameter on such graphs. 22 • Then as a byproduct of our approach, we get a truly subquadratic-time randomized algo-23 rithm for constant diameter computation on all the nowhere dense graph classes. The latter 24 classes include all proper minor-closed graph classes, bounded-degree graphs and graphs of 25 bounded expansion. Before our work, the only known such algorithm was resulting from 26 an application of Courcelle’s theorem, see Grohe et al. [47]. 27
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H-Minor自由图和有界(距离)Vapnik-Chervonenkis维图的直径、偏心率和距离Oracle计算
9在强指数时间假设下,一般未加权图10的直径不能在真正的次二次时间内计算(输入的大小为n + m),如Roditty和Williams所示11。然而,有几个图类可以这样做,如有界树宽图,区间图和平面图,仅举几例。我们13建议研究恒定距离vc维的无权图,作为许多此类图的广义推广14 -其中图G的距离vc维定义为其球超图的VC-15维:其超边是G中所有可能半径和中心16的球。特别是对于任意固定的H, H次自由图类的距离vc -维数最多为17 | V (H) |−1。18•我们的第一个主要结果是一个蒙特卡罗算法,该算法在距离vc维最多为19的图上,对于任何固定k,要么计算直径,要么得出它在时间上大于20k (k·mn 1 - ε d),其中ε d∈(0;1)只依赖于d1。因此,我们得到了一个真正的21次二次时间参数化算法来计算这种图上的直径。22•然后,作为我们方法的副产品,我们得到了一个真正的次二次时间随机算法-23算法,用于所有无处密集图类的常直径计算。后24类包括所有适当的小闭图类、有界度图和25有界展开图。在我们的工作之前,唯一已知的这种算法是由Courcelle定理的应用产生的,参见Grohe等人[47]。27
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Operator-Splitting Optimization Approach for Phase-Field Simulation of Equilibrium Shapes of Crystals A Simple and Efficient Convex Optimization Based Bound-Preserving High Order Accurate Limiter for Cahn-Hilliard-Navier-Stokes System Almost Complete Analytical Integration in Galerkin Boundary Element Methods Sublinear Algorithms for Local Graph-Centrality Estimation Deterministic \(\boldsymbol{(\unicode{x00BD}+\varepsilon)}\) -Approximation for Submodular Maximization over a Matroid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1