Uğur Kadioğlu, Muhammed Kürşad Uçar, Saadettin Yildirim
{"title":"Tarımda Kaliteli Tohum Üretimi için Kuru Fasulye Türlerinin Yapay Zekâ Tabanlı Sınıflandırılması","authors":"Uğur Kadioğlu, Muhammed Kürşad Uçar, Saadettin Yildirim","doi":"10.31202/ecjse.1135807","DOIUrl":null,"url":null,"abstract":"2020 yılında Dünya genelinde 27,5 milyon ton, Türkiye de 279,5 bin ton kuru fasulye üretilmiştir. Kuru fasulye geniş bir çeşitliliğe sahiptir. Bir çeşidi soğuk iklim koşullarında verimli olabilirken, bir çeşidi daha ılıman iklim koşullarında verimli olabilmektedir. Günümüzde kuru fasulye tohumları arasında farklı çeşitlere ait kuru fasulye tohumları karışabilmektedir. Bu durum kuru fasulye verimini olumsuz etkilemektedir. Bitkisel üretimde tohum kalitesi önemlidir. Bu nedenle tohum sınıflandırılması sürdürülebilir tarım ve verimlilik için önemlidir. Kuru fasulye sınıflandırılası günümüzde elekler yardımı ile yapılmaktadır. Elek ile sınıflandırma yönteminin dezavantajları fasulyenin çeşidini, kırık ve bozuk fasulyeleri tespit edememektedir. Hassas tohum seçimi yapılabilmesi için yeni teknolojilere ihtiyaç duyulmaktadır. Bu çalışmanın amacı kuru fasulyenin sınıflandırılması için yapay zekâ tabanlı bir model geliştirmektir. Çalışmada yedi çeşit 13.611 adet kuru fasulye örneği kullanılmıştır. Veriler dengesiz dağılması sebebiyle, öncelikle en az sınıfa ait veri sayısı (522) kadar dengelenmiş ve 3654 adet kuru fasulye örneği seçilmiştir. Fasulyelere ait 16 morfolojik özellik bulunmaktadır. Özellik seçme algoritması yardımıyla özellikler seçilerek performans artırımı amaçlanmıştır. Geliştirilen en iyi model performans değeri doğruluk oranı %98,2 ve AUC 1, PPV %100, TPR %100’dir. Elde edilen sonuçlara göre kuru fasulye tohumlarının yüksek başarı oranı ile sınıflandırılabileceği değerlendirilmektedir.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1135807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
2020 yılında Dünya genelinde 27,5 milyon ton, Türkiye de 279,5 bin ton kuru fasulye üretilmiştir. Kuru fasulye geniş bir çeşitliliğe sahiptir. Bir çeşidi soğuk iklim koşullarında verimli olabilirken, bir çeşidi daha ılıman iklim koşullarında verimli olabilmektedir. Günümüzde kuru fasulye tohumları arasında farklı çeşitlere ait kuru fasulye tohumları karışabilmektedir. Bu durum kuru fasulye verimini olumsuz etkilemektedir. Bitkisel üretimde tohum kalitesi önemlidir. Bu nedenle tohum sınıflandırılması sürdürülebilir tarım ve verimlilik için önemlidir. Kuru fasulye sınıflandırılası günümüzde elekler yardımı ile yapılmaktadır. Elek ile sınıflandırma yönteminin dezavantajları fasulyenin çeşidini, kırık ve bozuk fasulyeleri tespit edememektedir. Hassas tohum seçimi yapılabilmesi için yeni teknolojilere ihtiyaç duyulmaktadır. Bu çalışmanın amacı kuru fasulyenin sınıflandırılması için yapay zekâ tabanlı bir model geliştirmektir. Çalışmada yedi çeşit 13.611 adet kuru fasulye örneği kullanılmıştır. Veriler dengesiz dağılması sebebiyle, öncelikle en az sınıfa ait veri sayısı (522) kadar dengelenmiş ve 3654 adet kuru fasulye örneği seçilmiştir. Fasulyelere ait 16 morfolojik özellik bulunmaktadır. Özellik seçme algoritması yardımıyla özellikler seçilerek performans artırımı amaçlanmıştır. Geliştirilen en iyi model performans değeri doğruluk oranı %98,2 ve AUC 1, PPV %100, TPR %100’dir. Elde edilen sonuçlara göre kuru fasulye tohumlarının yüksek başarı oranı ile sınıflandırılabileceği değerlendirilmektedir.