Computer Simulation of Continuous Casting Processes: A Review

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Materials Science Pub Date : 2021-09-29 DOI:10.11648/J.AM.20211003.11
Nitin Amratav, K. K. Kumar, M. Pillai
{"title":"Computer Simulation of Continuous Casting Processes: A Review","authors":"Nitin Amratav, K. K. Kumar, M. Pillai","doi":"10.11648/J.AM.20211003.11","DOIUrl":null,"url":null,"abstract":"Steelmaking is the second step in producing steel from iron ore. In this stage, impurities such as sulfur, phosphorus, and excess carbon are removed from the raw iron, and alloying elements such as manganese, nickel, chromium, and vanadium are added to produce the exact steel required. Modern steelmaking processes are broken into two categories: primary and secondary steelmaking. Primary steelmaking uses mostly new iron as the feedstock, usually from a blast furnace. Secondary steelmaking uses scrap steel as the primary raw material. Gases created during the production of steel can be used as a power source. Steelmaking is presently a grounded innovation driven by plant, exploratory and computational examination. The continuous casting process comprises many complicated phenomena in terms of fluid flow, heat transfer, and structural deformation. The important numerical modeling method of the continuous casting process has been discussed in reference in this work. With the recent advancement in metallurgical methods, the continuous casting process now becomes the main method for steel production. To achieve efficient and effective production, the manufacturers of steel keep on searching for new methods which increase productivity. The present work describes molten steel flow, heat transfer, solidification, electromagnetic applications, formation of the shell by solidification and coupling, etc.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AM.20211003.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Steelmaking is the second step in producing steel from iron ore. In this stage, impurities such as sulfur, phosphorus, and excess carbon are removed from the raw iron, and alloying elements such as manganese, nickel, chromium, and vanadium are added to produce the exact steel required. Modern steelmaking processes are broken into two categories: primary and secondary steelmaking. Primary steelmaking uses mostly new iron as the feedstock, usually from a blast furnace. Secondary steelmaking uses scrap steel as the primary raw material. Gases created during the production of steel can be used as a power source. Steelmaking is presently a grounded innovation driven by plant, exploratory and computational examination. The continuous casting process comprises many complicated phenomena in terms of fluid flow, heat transfer, and structural deformation. The important numerical modeling method of the continuous casting process has been discussed in reference in this work. With the recent advancement in metallurgical methods, the continuous casting process now becomes the main method for steel production. To achieve efficient and effective production, the manufacturers of steel keep on searching for new methods which increase productivity. The present work describes molten steel flow, heat transfer, solidification, electromagnetic applications, formation of the shell by solidification and coupling, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连铸过程的计算机模拟:综述
炼钢是用铁矿石炼钢的第二步。在这一阶段,从原铁中除去硫、磷和多余的碳等杂质,并加入锰、镍、铬和钒等合金元素,以生产所需的钢。现代炼钢过程分为两类:一次炼钢和二次炼钢。初级炼钢主要使用新铁作为原料,通常来自高炉。二次炼钢以废钢为主要原料。钢铁生产过程中产生的气体可用作电源。炼钢目前是一种由工厂、探索和计算驱动的接地式创新。连铸过程包含了流体流动、传热和组织变形等多种复杂现象。本文对连铸过程的重要数值模拟方法进行了探讨。随着冶金技术的进步,连铸法已成为炼钢的主要方法。为了实现高效率的生产,钢铁制造商不断寻求提高生产率的新方法。本文介绍了钢水的流动、传热、凝固、电磁应用、凝固和耦合形成壳等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Materials Science
Advances in Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
自引率
7.70%
发文量
0
期刊最新文献
Mechanical Properties of Titanium Grade 1 After Laser Shock Wave Treatment Leading-Edge Polymer/Carbonaceous Nano-Reinforcement Nanocomposites—Opportunities for Space Sector The Effects of ArC Voltage and Shielding Gas Type on the Microstructure of Wire ArC Additively Manufactured 2209 Duplex Stainless Steel Mechanical and Corrosion Properties of Friction Stir Welded and Tungsten Inert Gas Welded Phosphor Bronze Numerical and Experimental Analysis of the Forging of a Bimetallic Crosshead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1