{"title":"R","authors":"Erfan Ghorbani, M. Alinaghian, G. B. Gharehpetian, Sajad Mohammadi, G. Perboli","doi":"10.1515/9783110723922-061","DOIUrl":null,"url":null,"abstract":"The growth of environmental awareness and more robust enforcement of numerous regulations to reduce greenhouse gas (GHG) emissions have directed efforts towards addressing current environmental challenges. Considering the Vehicle Routing Problem (VRP), one of the effective strategies to control greenhouse gas emissions is to convert the fossil fuel-powered fleet into Environmentally Friendly Vehicles (EFVs). Given the multitude of constraints and assumptions defined for different types of VRPs, as well as assumptions and operational constraints specific to each type of EFV, many variants of environmentally friendly VRPs (EF-VRP) have been introduced. In this paper, studies conducted on the subject of EF-VRP are reviewed, considering all the road transport EFV types and problem variants, and classifying and discussing with a single holistic vision. The aim of this paper is twofold. First, it determines a classification of EF-VRP studies based on different types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles (EVs) and Hybrid Vehicles (HVs). Second, it presents a comprehensive survey by considering each variant of the classification, technical constraints and solution methods arising in the literature. The results of this paper show that studies on EF-VRP are relatively novel and there is still room for large improvements in several areas. So, to determine future insights, for each classification of EF-VRP studies, the paper provides the literature gaps and future research needs.","PeriodicalId":93403,"journal":{"name":"ACM CHIL 2021 : proceedings of the 2021 ACM Conference on Health, Inference, and Learning : April 8-9, 2021, Virtual Event. ACM Conference on Health, Inference, and Learning (2021 : Online)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM CHIL 2021 : proceedings of the 2021 ACM Conference on Health, Inference, and Learning : April 8-9, 2021, Virtual Event. ACM Conference on Health, Inference, and Learning (2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110723922-061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth of environmental awareness and more robust enforcement of numerous regulations to reduce greenhouse gas (GHG) emissions have directed efforts towards addressing current environmental challenges. Considering the Vehicle Routing Problem (VRP), one of the effective strategies to control greenhouse gas emissions is to convert the fossil fuel-powered fleet into Environmentally Friendly Vehicles (EFVs). Given the multitude of constraints and assumptions defined for different types of VRPs, as well as assumptions and operational constraints specific to each type of EFV, many variants of environmentally friendly VRPs (EF-VRP) have been introduced. In this paper, studies conducted on the subject of EF-VRP are reviewed, considering all the road transport EFV types and problem variants, and classifying and discussing with a single holistic vision. The aim of this paper is twofold. First, it determines a classification of EF-VRP studies based on different types of EFVs, i.e., Alternative-Fuel Vehicles (AFVs), Electric Vehicles (EVs) and Hybrid Vehicles (HVs). Second, it presents a comprehensive survey by considering each variant of the classification, technical constraints and solution methods arising in the literature. The results of this paper show that studies on EF-VRP are relatively novel and there is still room for large improvements in several areas. So, to determine future insights, for each classification of EF-VRP studies, the paper provides the literature gaps and future research needs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R
环保意识的增强和减少温室气体排放的众多法规的更强有力的执行,已引导人们努力应对当前的环境挑战。考虑到车辆路径问题(VRP),控制温室气体排放的有效策略之一是将化石燃料驱动的车辆转换为环境友好型车辆(efv)。考虑到为不同类型的vrp定义的众多约束和假设,以及每种类型的EFV特有的假设和操作约束,已经引入了许多环境友好型vrp (EF-VRP)的变体。本文回顾了关于EFV - vrp的研究,考虑了所有道路运输EFV类型和问题变体,并以单一的整体视角进行了分类和讨论。本文的目的是双重的。首先,根据不同类型的电动汽车,即替代燃料汽车(afv)、电动汽车(ev)和混合动力汽车(HVs),确定了EF-VRP研究的分类。其次,综合考虑文献中出现的各种分类、技术约束和解决方法,进行了全面的综述。本文的研究结果表明,EF-VRP的研究相对较新,在一些领域仍有较大的改进空间。因此,为了确定未来的见解,对于EF-VRP研究的每个分类,本文提供了文献空白和未来的研究需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
"Capital in the Twenty-First Century" (Piketty, trans. Goldhammer) Social Contract Two: Revisiting Social Development An Exploratory Study on Child Sexual Abuse and Exploitation Factors of Coronavirus—Implications Stress, Anxiety, and Depression among Latinx University Students during the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1