{"title":"Bismuth-Containing Oxides as Catalysts for Oxidative Coupling of Hydrocarbons","authors":"E. A. Mamedov","doi":"10.1080/01614949408013919","DOIUrl":null,"url":null,"abstract":"Abstract Some bismuth-containing oxides, such as bismuth molybdates, are known to be effective catalysts for so-called allylic oxidation of C3-C4 olefins including partial oxidation to unsaturated aldehyde, oxidative dehydrogenation to diolefin, and ammoxidation to corresponding nitrile. This type of catalyst is well studied and repeatedly reviewed [1–3]. Its high effectiveness can be interpreted within a dual-site concept according to which hydrocarbon adsorbs on an active site associated with one of the metal oxide components while oxygen adsorbs on an active site associated with another metal oxide component. For instance, the authors [4, 5] assume a bismuth center to be responsible for the hydrocarbon conversion to an allylic species which then reacts further at a molybdenum site to produce aldehyde.","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"1994-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/01614949408013919","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 14
Abstract
Abstract Some bismuth-containing oxides, such as bismuth molybdates, are known to be effective catalysts for so-called allylic oxidation of C3-C4 olefins including partial oxidation to unsaturated aldehyde, oxidative dehydrogenation to diolefin, and ammoxidation to corresponding nitrile. This type of catalyst is well studied and repeatedly reviewed [1–3]. Its high effectiveness can be interpreted within a dual-site concept according to which hydrocarbon adsorbs on an active site associated with one of the metal oxide components while oxygen adsorbs on an active site associated with another metal oxide component. For instance, the authors [4, 5] assume a bismuth center to be responsible for the hydrocarbon conversion to an allylic species which then reacts further at a molybdenum site to produce aldehyde.
期刊介绍:
Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.