{"title":"CLINK","authors":"Zhe Chen, Andrew G. Howe, H. T. Blair, J. Cong","doi":"10.1145/3218603.3218637","DOIUrl":null,"url":null,"abstract":"Neurofeedback device measures brain wave and generates feedback signal in real time and can be employed as treatments for various neurological diseases. Such devices require high energy efficiency because they need to be worn or surgically implanted into patients and support long battery life time. In this paper, we propose CLINK, a compact LSTM inference kernel, to achieve high energy efficient EEG signal processing for neurofeedback devices. The LSTM kernel can approximate conventional filtering functions while saving 84% computational operations. Based on this method, we propose energy efficient customizable circuits for realizing CLINK function. We demonstrated a 128-channel EEG processing engine on Zynq-7030 with 0.8 W, and the scaled up 2048-channel evaluation on Virtex-VU9P shows that our design can achieve 215x and 7.9x energy efficiency compared to highly optimized implementations on E5-2620 CPU and K80 GPU, respectively. We carried out the CLINK design in a 15-nm technology, and synthesis results show that it can achieve 272.8 pJ/inference energy efficiency, which further outperforms our design on the Virtex-VU9P by 99x.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Neurofeedback device measures brain wave and generates feedback signal in real time and can be employed as treatments for various neurological diseases. Such devices require high energy efficiency because they need to be worn or surgically implanted into patients and support long battery life time. In this paper, we propose CLINK, a compact LSTM inference kernel, to achieve high energy efficient EEG signal processing for neurofeedback devices. The LSTM kernel can approximate conventional filtering functions while saving 84% computational operations. Based on this method, we propose energy efficient customizable circuits for realizing CLINK function. We demonstrated a 128-channel EEG processing engine on Zynq-7030 with 0.8 W, and the scaled up 2048-channel evaluation on Virtex-VU9P shows that our design can achieve 215x and 7.9x energy efficiency compared to highly optimized implementations on E5-2620 CPU and K80 GPU, respectively. We carried out the CLINK design in a 15-nm technology, and synthesis results show that it can achieve 272.8 pJ/inference energy efficiency, which further outperforms our design on the Virtex-VU9P by 99x.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发出叮当声
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adiabatic and Clock-Powered Circuits Power Macro-Models for High-Level Power Estimation Stand-By Power Reduction for SRAM Memories Leakage in CMOS Nanometric Technologies Evolution of Deep Submicron Bulk and SOI Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1