Novel techniques for Bayesian inference in univariate and multivariate stochastic volatility models

Q4 Social Sciences Working Paper - Chr. Michelson Institute Pub Date : 2022-04-01 DOI:10.52903/wp2022294
Tsionas Mike G.
{"title":"Novel techniques for Bayesian inference in univariate and multivariate stochastic volatility models","authors":"Tsionas Mike G.","doi":"10.52903/wp2022294","DOIUrl":null,"url":null,"abstract":"In this paper we exploit properties of the likelihood function of the stochastic volatility model to show that it can be approximated accurately and efficiently using a response surface methodology. The approximation is across the plausible range of parameter values and all possible data and is found to be highly accurate. The methods extend easily to multivariate models and are applied to artificial data as well as ten exchange rates and all stocks of FTSE100 using daily data. Formal comparisons with multivariate GARCH models are undertaken using a special prior for the GARCH parameters. The comparisons are based on marginal likelihood and the Bayes factors.","PeriodicalId":35806,"journal":{"name":"Working Paper - Chr. Michelson Institute","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Working Paper - Chr. Michelson Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52903/wp2022294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we exploit properties of the likelihood function of the stochastic volatility model to show that it can be approximated accurately and efficiently using a response surface methodology. The approximation is across the plausible range of parameter values and all possible data and is found to be highly accurate. The methods extend easily to multivariate models and are applied to artificial data as well as ten exchange rates and all stocks of FTSE100 using daily data. Formal comparisons with multivariate GARCH models are undertaken using a special prior for the GARCH parameters. The comparisons are based on marginal likelihood and the Bayes factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单变量和多变量随机波动模型中贝叶斯推理的新技术
本文利用随机波动模型的似然函数的性质,证明了用响应面方法可以准确有效地逼近随机波动模型。这种近似是在参数值和所有可能的数据的合理范围内,并且发现是高度准确的。该方法可以很容易地扩展到多元模型,并适用于人工数据以及十种汇率和使用每日数据的FTSE100的所有股票。使用GARCH参数的特殊先验,与多元GARCH模型进行正式比较。比较基于边际似然和贝叶斯因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Working Paper - Chr. Michelson Institute
Working Paper - Chr. Michelson Institute Social Sciences-Development
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Heterogeneous Districts, Interests, and Trade Policy Disincentive Effects of Unemployment Insurance Benefits An Alternative Measure of Core Inflation: The Trimmed Persistence PCE Price Index Charting the Course: How Does Information about Sea Level Rise Affect the Willingness to Migrate? Exploring country characteristics that encourage emissions reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1