Spirogyra cultured in fishpond wastewater for biomass generation

Tipsukhon Pimpimol, Burassakorn Tongmee, Padivarada Lomlai, Prsert Prasongpol, Niwooti Whangchai, Yuwalee Unpaprom, Rameshprabu Ramaraj
{"title":"Spirogyra cultured in fishpond wastewater for biomass generation","authors":"Tipsukhon Pimpimol, Burassakorn Tongmee, Padivarada Lomlai, Prsert Prasongpol, Niwooti Whangchai, Yuwalee Unpaprom, Rameshprabu Ramaraj","doi":"10.54279/mijeec.v2i3.245041","DOIUrl":null,"url":null,"abstract":"Algae are aquatic organisms that can be found in a wide range of water bodies. Algae, a form of aquatic organism, is found in many different water types. Besides being relatively easy to maintain, algae are also numerous, making them a good choice for biomass production. The filamentous Spirogyra sp., a common green alga, tends to grow in freshwater. It is said that this macroalga has a wide variety of biotechnological applications. Research in this area highlights biomass's creation and builds on our understanding of the composition of macroalgae generated in fish farm wastewater. A study of Spirogyra in undisturbed fish farm wastewater was conducted in this study. Various algal species were evaluated for their qualities, including biomass yields and productivity, protein, fat, and carbohydrates. This investigation has confirmed that the nutrients in fish farm effluent are suitable for cultivating algal biomass. Protein, lipid, and carbohydrate levels in unaltered fish farm effluent were the highest for Spirogyra, with percentages of 19.03, 8.38, and 45.71%, respectively. Thus, it was the most suitable organism for various biomass-based applications and nutrient removal.","PeriodicalId":18176,"journal":{"name":"Maejo International Journal of Energy and Environmental Communication","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maejo International Journal of Energy and Environmental Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54279/mijeec.v2i3.245041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Algae are aquatic organisms that can be found in a wide range of water bodies. Algae, a form of aquatic organism, is found in many different water types. Besides being relatively easy to maintain, algae are also numerous, making them a good choice for biomass production. The filamentous Spirogyra sp., a common green alga, tends to grow in freshwater. It is said that this macroalga has a wide variety of biotechnological applications. Research in this area highlights biomass's creation and builds on our understanding of the composition of macroalgae generated in fish farm wastewater. A study of Spirogyra in undisturbed fish farm wastewater was conducted in this study. Various algal species were evaluated for their qualities, including biomass yields and productivity, protein, fat, and carbohydrates. This investigation has confirmed that the nutrients in fish farm effluent are suitable for cultivating algal biomass. Protein, lipid, and carbohydrate levels in unaltered fish farm effluent were the highest for Spirogyra, with percentages of 19.03, 8.38, and 45.71%, respectively. Thus, it was the most suitable organism for various biomass-based applications and nutrient removal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在鱼塘废水中培养螺旋体用于生物质发电
藻类是一种水生生物,可以在各种各样的水体中找到。藻类是水生生物的一种,存在于许多不同类型的水中。除了相对容易维护外,藻类数量众多,使它们成为生物质生产的好选择。丝状螺旋藻是一种常见的绿藻,倾向于在淡水中生长。据说这种大型藻类具有广泛的生物技术应用。该领域的研究突出了生物质的创造,并建立在我们对养鱼场废水中产生的大型藻类组成的理解的基础上。本研究对未受干扰的养鱼场废水中的螺旋体进行了研究。对各种藻类的质量进行了评估,包括生物量产量和生产力、蛋白质、脂肪和碳水化合物。本研究证实,养鱼场废水中的营养物适合培养藻类生物量。在未改变的养鱼场废水中,螺旋体的蛋白质、脂肪和碳水化合物含量最高,分别为19.03%、8.38%和45.71%。因此,它是最适合各种生物质应用和营养物去除的生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revealing sustainable energy opportunities through the integrated use of Canna indica biomass and buffalo manure for biogas generation Sustainability innovation and circular economy of freshwater hybrid catfish oil extraction A sustainable approach to control biofilms infections and reduce medical waste: Catheters coated with antibiotics inhibit single and dual-species biofilms Bioconvertibility of fermentative vert wine: a comparative study of blue- green algae, pineapple, and longan fruits Sustainable synthesis of silver nanoparticles from Canna edulis for eco- friendly applications and their phytochemical and antimicrobial assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1