Efficient Top-K Query Processing on Massively Parallel Hardware

Anil Shanbhag, H. Pirk, S. Madden
{"title":"Efficient Top-K Query Processing on Massively Parallel Hardware","authors":"Anil Shanbhag, H. Pirk, S. Madden","doi":"10.1145/3183713.3183735","DOIUrl":null,"url":null,"abstract":"A common operation in many data analytics workloads is to find the top-k items, i.e., the largest or smallest operations according to some sort order (implemented via LIMIT or ORDER BY expressions in SQL). A naive implementation of top-k is to sort all of the items and then return the first k, but this does much more work than needed. Although efficient implementations for top-k have been explored on traditional multi-core processors, there has been no prior systematic study of top-k implementations on GPUs, despite open requests for such implementations in GPU-based frameworks like TensorFlow and ArrayFire. In this work, we present several top-k algorithms for GPUs, including a new algorithm based on bitonic sort called bitonic top-k. The bitonic top-k algorithm is up to a factor of \\new15x faster than sort and 4x faster than a variety of other possible implementations for values of k up to 256. We also develop a cost model to predict the performance of several of our algorithms, and show that it accurately predicts actual performance on modern GPUs.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

A common operation in many data analytics workloads is to find the top-k items, i.e., the largest or smallest operations according to some sort order (implemented via LIMIT or ORDER BY expressions in SQL). A naive implementation of top-k is to sort all of the items and then return the first k, but this does much more work than needed. Although efficient implementations for top-k have been explored on traditional multi-core processors, there has been no prior systematic study of top-k implementations on GPUs, despite open requests for such implementations in GPU-based frameworks like TensorFlow and ArrayFire. In this work, we present several top-k algorithms for GPUs, including a new algorithm based on bitonic sort called bitonic top-k. The bitonic top-k algorithm is up to a factor of \new15x faster than sort and 4x faster than a variety of other possible implementations for values of k up to 256. We also develop a cost model to predict the performance of several of our algorithms, and show that it accurately predicts actual performance on modern GPUs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行硬件上高效的Top-K查询处理
许多数据分析工作负载中的一个常见操作是查找top-k项,即根据某种排序顺序(通过SQL中的LIMIT或order BY表达式实现)查找最大或最小的操作。top-k的一种简单实现是对所有项进行排序,然后返回第一个k项,但这样做的工作量远远超过需要的工作量。尽管在传统的多核处理器上已经探索了top-k的有效实现,但是在gpu上还没有对top-k实现的系统研究,尽管在基于gpu的框架(如TensorFlow和ArrayFire)中有公开的实现请求。在这项工作中,我们提出了几种gpu的top-k算法,包括一种基于bitonic排序的新算法,称为bitonic top-k。bitonic top-k算法比sort快15倍,比k值为256的各种其他可能实现快4倍。我们还开发了一个成本模型来预测我们的几个算法的性能,并表明它准确地预测了现代gpu的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1