Wi-Fi sensing Human Detection with Kolmogorov-Wiener Filter and Gated Recurrent Neural Networks

P. Shibaev, A. Chupakhin
{"title":"Wi-Fi sensing Human Detection with Kolmogorov-Wiener Filter and Gated Recurrent Neural Networks","authors":"P. Shibaev, A. Chupakhin","doi":"10.15514/ispras-2022-34(2)-11","DOIUrl":null,"url":null,"abstract":"Using Received Signal Strength Indicator (RSSI) values to detect human presence is a well-known Wi-Fi sensing technique. In this paper, an overview of existing algorithms solving the problem is considered. Two new techniques based on the discrete Kolmogorov-Wiener filter and the gated recurrent unit neural network are proposed. Human detection experiment results are presented along with algorithms' accuracy analysis.","PeriodicalId":33459,"journal":{"name":"Trudy Instituta sistemnogo programmirovaniia RAN","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trudy Instituta sistemnogo programmirovaniia RAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15514/ispras-2022-34(2)-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using Received Signal Strength Indicator (RSSI) values to detect human presence is a well-known Wi-Fi sensing technique. In this paper, an overview of existing algorithms solving the problem is considered. Two new techniques based on the discrete Kolmogorov-Wiener filter and the gated recurrent unit neural network are proposed. Human detection experiment results are presented along with algorithms' accuracy analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Kolmogorov-Wiener滤波和门控递归神经网络的Wi-Fi传感人体检测
使用接收信号强度指示器(RSSI)值来检测人类的存在是一种众所周知的Wi-Fi传感技术。本文对现有的解决该问题的算法进行了综述。提出了基于离散Kolmogorov-Wiener滤波器和门控递归单元神经网络的两种新方法。给出了人体检测实验结果,并对算法的精度进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
18
审稿时长
4 weeks
期刊最新文献
Development of Legal Document Classification System Based on Support Vector Machine Scrumlity: A Quality User Story Framework Doctor of Technical Sciences, Professor, Chief Researcher at ISP RAS, Professor at the Departments of System Programming of MSU, MIPT, and HSE On open third-party libraries usage in implementation of vortex particle methods of computational fluid dynamics Data farm: Information system for collecting, storing and processing unstructured data from heterogeneous sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1