The effects of dry versus wet season on the performance of a wastewater treatment plant in North West Province, South Africa

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES Water SA Pub Date : 2022-01-26 DOI:10.17159/wsa/2022.v48.i1.3897
S Makuwa, M Tlou, E Fosso-Kankeu, E Green
{"title":"The effects of dry versus wet season on the performance of a wastewater treatment plant in North West Province, South Africa","authors":"S Makuwa, M Tlou, E Fosso-Kankeu, E Green","doi":"10.17159/wsa/2022.v48.i1.3897","DOIUrl":null,"url":null,"abstract":"The study was conducted at a wastewater treatment plant (WWTP) in the North West Province of South Africa (SA), to investigate the effect of seasonal variations of rainfall and temperature on the fate of Escherichia coli (E. coli) and on chemical parameters. Both seasons showed variations in terms of rainfall levels and temperature. The average temperatures measured at the final effluent were 14 and 22°C for the dry and wet season, while the rainfall averages ranged between 0.0 and 69.0 mm and 16.0 and 258.9 mm for the dry and wet season, respectively. The impact of rainfall within the two seasons presented a variation in the plant inflow rate of 34 000 and 48 000 m3 during the dry and wet season, respectively. Higher E. coli concentrations were detected before and after chlorination in the wet season (1.86 x 105 and 8.40 x 101 MPN/100 mL) than in the dry season (2.26 x 104 and 5.10 x 101 MPN/100 mL). The recorded values for the chemical parameters in the dry and wet season were within the following ranges: ammonia (0.27 and 3.68 mg/L), chemical oxygen demand (COD) (29.53 and 22.10 mg/L), nitrate (9.21 and 2.40 mg/L) and ortho-phosphate (0.46 and 0.39 mg/L). Though the detections of these indicator parameters were affected differently by the seasonal variations, it is important to note that the efficiency of the WWTP in reducing these indicator parameters proved to be consistent across all seasons, except in the case of ammonia and nitrate. The majority of the studied parameters showed effective compliance when measured against SA regulatory standards (general limits) in both the dry and wet season, with the exception of ammonia during the wet season.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i1.3897","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 7

Abstract

The study was conducted at a wastewater treatment plant (WWTP) in the North West Province of South Africa (SA), to investigate the effect of seasonal variations of rainfall and temperature on the fate of Escherichia coli (E. coli) and on chemical parameters. Both seasons showed variations in terms of rainfall levels and temperature. The average temperatures measured at the final effluent were 14 and 22°C for the dry and wet season, while the rainfall averages ranged between 0.0 and 69.0 mm and 16.0 and 258.9 mm for the dry and wet season, respectively. The impact of rainfall within the two seasons presented a variation in the plant inflow rate of 34 000 and 48 000 m3 during the dry and wet season, respectively. Higher E. coli concentrations were detected before and after chlorination in the wet season (1.86 x 105 and 8.40 x 101 MPN/100 mL) than in the dry season (2.26 x 104 and 5.10 x 101 MPN/100 mL). The recorded values for the chemical parameters in the dry and wet season were within the following ranges: ammonia (0.27 and 3.68 mg/L), chemical oxygen demand (COD) (29.53 and 22.10 mg/L), nitrate (9.21 and 2.40 mg/L) and ortho-phosphate (0.46 and 0.39 mg/L). Though the detections of these indicator parameters were affected differently by the seasonal variations, it is important to note that the efficiency of the WWTP in reducing these indicator parameters proved to be consistent across all seasons, except in the case of ammonia and nitrate. The majority of the studied parameters showed effective compliance when measured against SA regulatory standards (general limits) in both the dry and wet season, with the exception of ammonia during the wet season.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干湿季节对南非西北省污水处理厂性能的影响
该研究在南非西北省(SA)的一家污水处理厂(WWTP)进行,目的是调查降雨和温度的季节变化对大肠杆菌(E. coli)命运和化学参数的影响。两个季节在降雨量和温度方面都表现出变化。干季和湿季的最终出水平均温度分别为14°和22°C,而干季和湿季的平均降雨量分别在0.0至69.0毫米和16.0至258.9毫米之间。两季降雨影响下,干湿季节植物入库量分别为3.4万m3和4.8万m3。雨季加氯前后大肠杆菌浓度分别为1.86 × 105和8.40 × 101 MPN/100 mL,高于旱季(2.26 × 104和5.10 × 101 MPN/100 mL)。干湿季节的化学参数记录值分别为氨(0.27和3.68 mg/L)、化学需氧量(COD)(29.53和22.10 mg/L)、硝酸盐(9.21和2.40 mg/L)和正磷酸盐(0.46和0.39 mg/L)。尽管这些指标参数的检测受季节变化的影响不同,但值得注意的是,除氨和硝态氮外,污水处理厂降低这些指标参数的效率在所有季节都是一致的。在旱季和雨季,除氨外,大多数所研究的参数在旱季和雨季均符合SA监管标准(一般限制)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
期刊最新文献
Effects of leachate concentration, carbon dioxide and aeration flow rate on chlorophyll and carotenoid productivity and bioremediation potential of the microalga Chlorella minutissima Experimental study on optimum performance of two-stage air-heated bubble-column humidification–dehumidification system Occurrence of multidrug-resistant Escherichia coli and antibiotic resistance genes in a wastewater treatment plant and its associated river water in Harare, Zimbabwe A baseline study on the prevalence of microplastics in South African drinking water: from source to distribution Effect of water stratification and mixing on phytoplankton functional groups: a case study of Xikeng Reservoir, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1